File size: 8,274 Bytes
625a17f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import argparse
import json
import tqdm
import cv2
import os
import numpy as np
from pycocotools import mask as mask_utils
import random
from PIL import Image
from natsort import natsorted

EVALMODE = "test"


def blend_mask(input_img, binary_mask, alpha=0.5, color="g"):
    if input_img.ndim == 2:
        return input_img
    mask_image = np.zeros(input_img.shape, np.uint8)
    if color == "r":
        mask_image[:, :, 0] = 255
    if color == "g":
        mask_image[:, :, 1] = 255
    if color == "b":
        mask_image[:, :, 2] = 255
    if color == "o":
        mask_image[:, :, 0] = 255
        mask_image[:, :, 1] = 165
        mask_image[:, :, 2] = 0
    if color == "c":
        mask_image[:, :, 0] = 0
        mask_image[:, :, 1] = 255
        mask_image[:, :, 2] = 255
    if color == "p":
        mask_image[:, :, 0] = 128
        mask_image[:, :, 1] = 0
        mask_image[:, :, 2] = 128

    mask_image = mask_image * np.repeat(binary_mask[:, :, np.newaxis], 3, axis=2)
    blend_image = input_img[:, :, :].copy()
    pos_idx = binary_mask > 0
    for ind in range(input_img.ndim):
        ch_img1 = input_img[:, :, ind]
        ch_img2 = mask_image[:, :, ind]
        ch_img3 = blend_image[:, :, ind]
        ch_img3[pos_idx] = alpha * ch_img1[pos_idx] + (1 - alpha) * ch_img2[pos_idx]
        blend_image[:, :, ind] = ch_img3
    return blend_image


def upsample_mask(mask, frame):
    H, W = frame.shape[:2]
    mH, mW = mask.shape[:2]

    if W > H:
        ratio = mW / W
        h = H * ratio
        diff = int((mH - h) // 2)
        if diff == 0:
            mask = mask
        else:
            mask = mask[diff:-diff]
    else:
        ratio = mH / H
        w = W * ratio
        diff = int((mW - w) // 2)
        if diff == 0:
            mask = mask
        else:
            mask = mask[:, diff:-diff]

    mask = cv2.resize(mask, (W, H))
    return mask


def downsample(mask, frame):
    H, W = frame.shape[:2]
    mH, mW = mask.shape[:2]

    mask = cv2.resize(mask, (W, H))
    return mask


#datapath /datasegswap
#inference_path /inference_xmem_ego_last/coco
#output /vis_piano
#--show_gt要加上
if __name__ == "__main__":

    color = ['g', 'r', 'b', 'o', 'c', 'p']
    filter_byname_path = "/work/yuqian_fu/Ego/filter_takes_byname.json" 
    split_path = "/home/yuqian_fu/Projects/ego-exo4d-relation/correspondence/SegSwap/data/split.json"
    data_path = "/work/yuqian_fu/Ego/data_segswap"
    output_path = "/work/yuqian_fu/Ego/vis_gt_predictions_split_1113"
    setting = "ego2exo"  #debug
    #setting = "exo2ego"
    #mask_path = "/data/work-gcp-europe-west4-a/yuqian_fu/Ego/data_segswap/mask_predictions/psalm_original"
    mask_path = "/work/yuqian_fu/Ego/data_segswap/mask_predictions/egofullmodel_smalljson" #debug
    #mask_path = "/data/work-gcp-europe-west4-a/yuqian_fu/Ego/data_segswap/mask_predictions/exofullmodel_smalljson"
    #mask_path = "/data/work-gcp-europe-west4-a/yuqian_fu/Ego/data_segswap/mask_predictions/psalmfinetune_ego_exo_smalljson"
    model_name = mask_path.split("/")[-1]


    with open(split_path, "r") as fp:
        raw_takes = json.load(fp)
    with open(filter_byname_path, "r") as fp:
        take_names = json.load(fp)
    # takes_ids = raw_takes['val']
    # takes_ids = take_names["soccer"]
    # takes_ids = random.sample(takes_ids, 10)
    #print(takes_ids)

    takes_ids = ["3a1b3ec6-13fd-43f4-8af6-f943953e01e4"]
    

    #takes_ids = ["0fe5b647-cdd0-43e9-8710-b33a2e0f83ef", "7c341853-eea3-4243-ab99-e11919aefa4c", "27369696-d356-4d1b-8a22-be8bd4442150", "f291d174-596d-471f-836b-993315197824", "d300ece0-41a7-4707-a08b-2f48aedeb75f", "2fe390a8-1506-4420-9008-74199f92797b"]

    #takes_ids_bike_exo2ego = ['c935b13b-462a-4ced-a041-f06592dff0e5', '99052842-9369-415d-b87b-1bf756ab13dd', '6fbe4821-85ec-4834-80bb-0a214fa80893', '2dc49d13-5347-4d4b-8506-5510f2ae0b84', '85b4c3c3-6486-43bd-b5b6-7cae6ffd4c9f', '349a435d-c2ad-4c64-9067-8733e7cd5ec9', '71b8a896-84d6-4da6-97ab-78cfee6cd5da', '1bc1334f-2546-4175-a9f4-b4338f46a246', 'cda93e67-c411-48cd-83f0-d7aafc6e4b3f', '812bb3bb-217a-454c-995c-d3e995576b81']
    #takes_ids_cooking_exo2ego = ['e420250d-b67f-4c46-bc40-31b8c9003d7e', '645a45ce-c993-4f67-b136-fe8c3bad9b6b', '3ca3a186-a650-4f8b-a9d0-f0bdb19bd860', '8caf94c0-835e-48cd-9e7c-fa6bfddc0d5c', '4d799166-0362-4daa-9f26-72e27a4feb31', 'ac5bc1ee-b7d5-4948-90aa-8f418ca4c0fa', 'aa6257e0-001a-422b-9935-2f9c2b5973e6', '99a39dee-cd6d-4a27-b32e-bc2dee856c02', 'a56ce926-8c85-4883-9ff5-dd7779d71b64']
    #takes_ids_basketball_exo2ego = ['936e7e6e-aa06-4aca-b877-8d5f3c59ecc1', '0669b09c-fda3-4fbb-9c41-b9b1fd3ff31e', '2ec7440e-5e29-410b-a5f6-40e3a2e45a31', '9e08e1e7-179a-4dac-bd0e-6e98e47407d2', '1247a29c-9fda-47ac-8b9c-78b1e76e977e', '9ebe4ac3-1472-4094-9e73-6014e78e0539', '6c4e2422-e83b-4ae5-8b9f-7bfdf3f2d3f7', '2e00eb80-4fd0-4ba5-bcbb-5e671d7f3627', '6449cb24-e14c-4238-9d57-2e0efc4794ba', '5d25cc61-f04d-47e3-9f0e-dbbf7707f0a0']

    #takes_ids_music_ego2exo = ['b5f8232e-5686-43ba-8e7a-ffeadb232444', '9feb55a1-b244-4323-b4d9-fa1af2893864', 'd8db054f-b5ee-41c3-ba66-cb84ed2d286e', 'ae2207b2-9b33-4f6a-aeb5-e2718a253c3b', '7a0757f4-8ada-424a-b4fb-81fac89c7259']
    #takes_ids_bike_ego2exo = ['6fbe4821-85ec-4834-80bb-0a214fa80893', '725b6b84-0a79-4053-b581-828a5da77753', '2bb5152e-cab4-46dc-9aa6-e73007f7df8b', '2da6c2ce-a88f-4790-9642-8dfa810ae91b', 'dfe05c45-851b-4a94-9c22-05aca881fda6', '7785da94-b19b-491c-94dc-89106e095f79', 'c692c40e-f2ca-4338-bb9e-1c779a7288a2', '85b4c3c3-6486-43bd-b5b6-7cae6ffd4c9f', '349a435d-c2ad-4c64-9067-8733e7cd5ec9', 'cda93e67-c411-48cd-83f0-d7aafc6e4b3f']
    #takes_ids_basketball_ego2exo = ['053fcb5e-1f33-493f-88c2-f61df147b4e5', '1247a29c-9fda-47ac-8b9c-78b1e76e977e', '47850a65-9719-4770-92e4-e428953addb3', '2e00eb80-4fd0-4ba5-bcbb-5e671d7f3627', '6c4e2422-e83b-4ae5-8b9f-7bfdf3f2d3f7', 'f2934ab9-bcfd-42fa-a329-7d0fc28818aa', '3a1b3ec6-13fd-43f4-8af6-f943953e01e4', '67e74067-407f-4aa9-b8d9-dbac6ea2464f', '6ca51642-c089-4989-b5a3-07977ec927d7', '09417ca4-3572-4ba1-a1db-7eaf3bd0b1c8']


    for take_id in tqdm.tqdm(takes_ids):
        #实验需改动
        prediction_path = os.path.join(mask_path, take_id)
        if not os.path.exists(prediction_path):
            print(take_id)
            continue

        #debug:检查是否存在
        # test_path = f"{output_path}/{setting}/music/{take_id}"
        # if os.path.exists(test_path):
        #     continue
        # print(take_id)


        #here is our model
        target_cam = os.listdir(prediction_path)[0] #debug

        #here is psalm_original model #debug
        # cams = natsorted(os.listdir(prediction_path))
        # if setting == "ego2exo":
        #     target_cam = cams[1]
        # elif setting == "exo2ego":
        #     target_cam = cams[0]
            

        prediction_path = os.path.join(prediction_path, target_cam)

        file_names = natsorted(os.listdir(prediction_path))
        idxs = [int(f.split(".")[0]) for f in file_names]

        


        #为了节省内存 实际上可以idx[:60]来可视化部分帧
        for id in idxs:
            frame_idx = str(id)
            frame = cv2.imread(
                f"{data_path}/{take_id}/{target_cam}/{frame_idx}.jpg"
            )
            mask = Image.open(f"{prediction_path}/{frame_idx}.png")
            mask = np.array(mask)
            unique_instances = np.unique(mask)
            unique_instances = unique_instances[unique_instances != 0]
            for i,instance_value in enumerate(unique_instances):
                binary_mask = (mask == instance_value).astype(np.uint8)
                binary_mask = cv2.resize(binary_mask, (frame.shape[1], frame.shape[0]))
                binary_mask = upsample_mask(binary_mask, frame)
                out = blend_mask(frame, binary_mask, color=color[0])
                os.makedirs(
                            f"{output_path}/{setting}/basketball/{take_id}/predictions_{model_name}/obj_{i}/{target_cam}",  #debug
                            exist_ok=True,
                        )
                cv2.imwrite(
                    f"{output_path}/{setting}/basketball/{take_id}/predictions_{model_name}/obj_{i}/{target_cam}/{frame_idx}.jpg",
                    out,
                )