File size: 12,552 Bytes
36c1e62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import copy
import logging
import numpy as np
import torch
import random
import cv2
from detectron2.config import configurable
from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T
from detectron2.structures import BitMasks
from pycocotools import mask as coco_mask
from pycocotools.mask import encode, decode, frPyObjects
def draw_circle(mask, center, radius):
y, x = np.ogrid[:mask.shape[0], :mask.shape[1]]
distance = np.sqrt((x - center[1]) ** 2 + (y - center[0]) ** 2)
mask[distance <= radius] = 1
def enhance_with_circles(binary_mask, radius=5):
if not isinstance(binary_mask, np.ndarray):
binary_mask = np.array(binary_mask)
binary_mask = binary_mask.astype(np.uint8)
output_mask = np.zeros_like(binary_mask, dtype=np.uint8)
points = np.argwhere(binary_mask == 1)
for point in points:
draw_circle(output_mask, (point[0], point[1]), radius)
return output_mask
def is_mask_non_empty(rle_mask):
if rle_mask is None:
return False
binary_mask = decode(rle_mask)
return binary_mask.sum() > 0
def convert_coco_poly_to_mask(segmentations, height, width):
masks = []
for polygons in segmentations:
rles = coco_mask.frPyObjects(polygons, height, width)
mask = coco_mask.decode(rles)
if len(mask.shape) < 3:
mask = mask[..., None]
mask = torch.as_tensor(mask, dtype=torch.uint8)
mask = mask.any(dim=2)
masks.append(mask)
if masks:
masks = torch.stack(masks, dim=0)
else:
masks = torch.zeros((0, height, width), dtype=torch.uint8)
return masks
def build_transform_gen(cfg):
"""
Create a list of default :class:`Augmentation` from config.
Now it includes resizing and flipping.
Returns:
list[Augmentation]
"""
image_size = cfg.INPUT.IMAGE_SIZE
min_scale = cfg.INPUT.MIN_SCALE
max_scale = cfg.INPUT.MAX_SCALE
augmentation = []
# if cfg.INPUT.RANDOM_FLIP != "none":
# augmentation.append(
# T.RandomFlip(
# horizontal=cfg.INPUT.RANDOM_FLIP == "horizontal",
# vertical=cfg.INPUT.RANDOM_FLIP == "vertical",
# )
# )
augmentation.extend([
# T.ResizeScale(
# min_scale=min_scale, max_scale=max_scale, target_height=image_size, target_width=image_size
# ),
T.ResizeShortestEdge(
short_edge_length=image_size, max_size=image_size
),
T.FixedSizeCrop(crop_size=(image_size, image_size), seg_pad_value=0),
])
return augmentation
class COCOInstanceNewBaselineDatasetMapper:
"""
A callable which takes a dataset dict in Detectron2 Dataset format,
and map it into a format used by MaskFormer.
This dataset mapper applies the same transformation as DETR for COCO panoptic segmentation.
The callable currently does the following:
1. Read the image from "file_name"
2. Applies geometric transforms to the image and annotation
3. Find and applies suitable cropping to the image and annotation
4. Prepare image and annotation to Tensors
"""
def __init__(self, cfg):
"""
NOTE: this interface is experimental.
Args:
is_train: for training or inference
augmentations: a list of augmentations or deterministic transforms to apply
tfm_gens: data augmentation
image_format: an image format supported by :func:`detection_utils.read_image`.
"""
self.tfm_gens = build_transform_gen(cfg)
self.pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
self.pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
@classmethod
def from_config(cls, cfg, is_train=True):
# Build augmentation
tfm_gens = build_transform_gen(cfg, is_train)
ret = {
"is_train": is_train,
"tfm_gens": tfm_gens,
"image_format": cfg.INPUT.FORMAT,
}
return ret
def preprocess(self, dataset_dict, region_mask_type=None, mask_format='polygon'):
"""
Args:
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.
Returns:
dict: a format that builtin models in detectron2 accept
"""
dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below
if isinstance(dataset_dict["file_name"],str):
image = utils.read_image(dataset_dict["file_name"], format='RGB')
else:
image = np.array(dataset_dict["file_name"])
# print(dataset_dict)
# print(image)
utils.check_image_size(dataset_dict, image)
utils.check_image_size(dataset_dict, image)
gt_masks_list = []
for ann in dataset_dict["annotations"]:
mask_tmp = decode(ann["segmentation"])
gt_masks_list.append(mask_tmp)
dataset_dict["gt_mask_list"] = gt_masks_list
dataset_dict["vp_file_path"] = dataset_dict["vp_image"]
padding_mask = np.ones(image.shape[:2])
image, transforms = T.apply_transform_gens(self.tfm_gens, image)
# the crop transformation has default padding value 0 for segmentation
padding_mask = transforms.apply_segmentation(padding_mask)
padding_mask = ~ padding_mask.astype(bool)
image_shape = image.shape[:2]
image = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))
dataset_dict["image"] = (image - self.pixel_mean) / self.pixel_std
dataset_dict["padding_mask"] = torch.as_tensor(np.ascontiguousarray(padding_mask))
dataset_dict['transforms'] = transforms
region_masks = []
if 'vp_image' in dataset_dict:
if isinstance(dataset_dict["vp_image"], str):
vp_image = utils.read_image(dataset_dict["vp_image"], format='RGB')
else:
vp_image = np.array(dataset_dict["vp_image"])
vp_padding_mask = np.ones(vp_image.shape[:2])
vp_image, vp_transforms = T.apply_transform_gens(self.tfm_gens, vp_image)
vp_padding_mask = vp_transforms.apply_segmentation(vp_padding_mask)
vp_padding_mask = ~ vp_padding_mask.astype(bool)
#1024x1024
vp_image_shape = vp_image.shape[:2]
vp_image = torch.as_tensor(np.ascontiguousarray(vp_image.transpose(2, 0, 1)))
dataset_dict["vp_image"] = (vp_image - self.pixel_mean) / self.pixel_std
dataset_dict["vp_padding_mask"] = torch.as_tensor(np.ascontiguousarray(vp_padding_mask))
dataset_dict['vp_transforms'] = vp_transforms
vp_region_masks = []
vp_fill_number = []
vp_annos = [
utils.transform_instance_annotations(obj, vp_transforms, vp_image_shape)
for obj in dataset_dict.pop("vp_annotations")
if obj.get("iscrowd", 0) == 0
]
if len(vp_annos) == 0:
print('error')
else:
for vp_anno in vp_annos:
vp_region_mask = vp_anno['segmentation']
vp_fill_number.append(int(vp_anno['category_id']))
# vp_scale_region_mask = transforms.apply_segmentation(vp_region_mask)
vp_region_masks.append(vp_region_mask)
if "annotations" in dataset_dict:
for anno in dataset_dict["annotations"]:
anno.pop("keypoints", None)
annotations = dataset_dict['annotations']
annos = [
utils.transform_instance_annotations(obj, transforms, image_shape)
for obj in dataset_dict.pop("annotations")
if obj.get("iscrowd", 0) == 0
]
if len(annos) ==0:
print('error')
filter_annos = []
if 'mask_visual_prompt_mask' in annos[0]:
if region_mask_type is None:
region_mask_type = ['mask_visual_prompt_mask']
for anno in annos:
non_empty_masks = []
for mask_type in region_mask_type:
if is_mask_non_empty(anno[mask_type]):
non_empty_masks.append(mask_type)
# assert non_empty_masks, 'No visual prompt found in {}'.format(dataset_dict['file_name'])
if len(non_empty_masks) == 0:
continue
used_mask_type = random.choice(non_empty_masks)
region_mask = decode(anno[used_mask_type])
if used_mask_type in ['point_visual_prompt_mask', 'scribble_visual_prompt_mask']:
radius = 10 if used_mask_type == 'point_visual_prompt_mask' else 5
region_mask = enhance_with_circles(region_mask, radius)
scale_region_mask = transforms.apply_segmentation(region_mask)
region_masks.append(scale_region_mask)
filter_annos.append(anno)
if len(filter_annos) == 0:
filter_annos = annos
# NOTE: does not support BitMask due to augmentation
# Current BitMask cannot handle empty objects
# instances = utils.annotations_to_instances(annos, image_shape)
instances = utils.annotations_to_instances(filter_annos, image_shape, mask_format=mask_format) # null_mask:生成instances的函数
if 'lvis_category_id' in filter_annos[0]:
lvis_classes = [int(obj["lvis_category_id"]) for obj in annos]
lvis_classes = torch.tensor(lvis_classes, dtype=torch.int64)
instances.lvis_classes = lvis_classes
instances.gt_boxes = instances.gt_masks.get_bounding_boxes()
# non_empty_instance_mask = [len(obj.get('segmentation', [])) > 0 for obj in annos]
non_empty_instance_mask = [len(obj.get('segmentation', [])) > 0 for obj in filter_annos]
# Need to filter empty instances first (due to augmentation)
instances = utils.filter_empty_instances(instances) # debug null_mask
# Generate masks from polygon
h, w = instances.image_size
# image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float)
if hasattr(instances, 'gt_masks'):
gt_masks = instances.gt_masks
if hasattr(gt_masks,'polygons'):
gt_masks = convert_coco_poly_to_mask(gt_masks.polygons, h, w)
else:
gt_masks = gt_masks.tensor.to(dtype=torch.uint8)
instances.gt_masks = gt_masks
if region_masks:
region_masks = [m for m, keep in zip(region_masks, non_empty_instance_mask) if keep]
assert len(region_masks) == len(instances), 'The number of region masks must match the number of instances'
region_masks = BitMasks(
torch.stack([torch.from_numpy(np.ascontiguousarray(x)) for x in region_masks])
)
instances.region_masks = region_masks
if 'vp_image' in dataset_dict:
vp_region_masks = BitMasks(
torch.stack([torch.from_numpy(np.ascontiguousarray(x)) for x in vp_region_masks])
)
instances.vp_region_masks = vp_region_masks
instances.vp_fill_number = torch.tensor(vp_fill_number, dtype=torch.int64)
dataset_dict["instances"] = instances
return dataset_dict
def build_transform_gen_for_eval(cfg):
image_size = cfg.INPUT.IMAGE_SIZE
min_scale = cfg.INPUT.MIN_SCALE
max_scale = cfg.INPUT.MAX_SCALE
augmentation = []
augmentation.extend([
T.ResizeShortestEdge(
short_edge_length=image_size, max_size=image_size
),
T.FixedSizeCrop(crop_size=(image_size, image_size), seg_pad_value=0),
])
return augmentation
class COCOInstanceNewBaselineDatasetMapperForEval(COCOInstanceNewBaselineDatasetMapper):
def __init__(self, cfg):
super().__init__(cfg)
self.tfm_gens = build_transform_gen_for_eval(cfg)
self.pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
self.pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
|