ObjectRelator-plus / objectrelator /train /train_ObjectRelator.py
YuqianFu's picture
Upload folder using huggingface_hub
36c1e62 verified
# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from objectrelator.train.train_datasets import *
from datasets.egoexo_dataset import EgoExo_Dataset_train, Handal_Dataset_train
from objectrelator.mask_config.config import Config
from objectrelator.model.language_model.llava_phi import ObjectRelator
from objectrelator.train.llava_trainer_SSL import LLaVATrainerSSL
from objectrelator.mask_config.data_args import DataArguments, TrainingArguments, ModelArguments
from fvcore.common.config import CfgNode
import warnings
warnings.filterwarnings('ignore')
local_rank = None
def print_trainable_parm(model,prefix):
for name, module in model.named_modules():
print_flag = False
for p in module.parameters():
if p.requires_grad == True:
print(f'{prefix}: {name}')
print_flag = True
break
def get_mask_config(config='./objectrelator/mask_config/maskformer2_swin_base_384_bs16_50ep.yaml'):
cfg_coco = Config.fromfile(config)
cfg_base = CfgNode.load_yaml_with_base(config, allow_unsafe=True)
cfg_base.update(cfg_coco.__dict__.items())
cfg = cfg_base
cfg = Config(cfg)
return cfg
def print_dtype(model,prefix,dtype):
for name,p in model.named_parameters():
if p.dtype != dtype:
print(f'{prefix}: {name}')
print(p.dtype)
def rank0_print(*args):
if local_rank == 0:
print(*args)
def maybe_zero_3(param, ignore_status=False, name=None):
from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
if hasattr(param, "ds_id"):
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
if not ignore_status:
logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}")
with zero.GatheredParameters([param]):
param = param.data.detach().cpu().clone()
else:
param = param.detach().cpu().clone()
return param
def get_peft_state_maybe_zero_3(named_params, bias):
if bias == "none":
to_return = {k: t for k, t in named_params if "lora_" in k}
elif bias == "all":
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
elif bias == "lora_only":
to_return = {}
maybe_lora_bias = {}
lora_bias_names = set()
for k, t in named_params:
if "lora_" in k:
to_return[k] = t
bias_name = k.split("lora_")[0] + "bias"
lora_bias_names.add(bias_name)
elif "bias" in k:
maybe_lora_bias[k] = t
for k, t in maybe_lora_bias:
if bias_name in lora_bias_names:
to_return[bias_name] = t
else:
raise NotImplementedError
to_return = {k: maybe_zero_3(v, name=k) for k, v in to_return.items()}
return to_return
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
to_return = {k: t for k, t in named_params if "lora_" not in k}
if require_grad_only:
to_return = {k: t for k, t in to_return.items() if t.requires_grad}
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
return to_return
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
return to_return
def find_all_linear_names(model):
cls = torch.nn.Linear
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names: # needed for 16-bit
lora_module_names.remove('lm_head')
return list(lora_module_names)
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer,
output_dir: str):
"""Collects the state dict and dump to disk."""
if getattr(trainer.args, "tune_mm_mlp_adapter", False):
# Only save Adapter
keys_to_match = ['mm_projector']
if getattr(trainer.args, "use_im_start_end", False):
keys_to_match.extend(['embed_tokens', 'embed_in'])
weight_to_save = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), keys_to_match)
trainer.model.config.save_pretrained(output_dir)
current_folder = output_dir.split('/')[-1]
parent_folder = os.path.dirname(output_dir)
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1:
if current_folder.startswith('checkpoint-'):
mm_projector_folder = os.path.join(parent_folder, "mm_projector")
os.makedirs(mm_projector_folder, exist_ok=True)
torch.save(weight_to_save, os.path.join(mm_projector_folder, f'{current_folder}.bin'))
else:
torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin'))
return
if trainer.deepspeed:
torch.cuda.synchronize()
trainer.save_model(output_dir)
return
state_dict = trainer.model.state_dict()
if trainer.args.should_save:
cpu_state_dict = {
key: value.cpu()
for key, value in state_dict.items()
}
del state_dict
trainer._save(output_dir, state_dict=cpu_state_dict)
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
def _tokenize_fn(strings: Sequence[str],
tokenizer: transformers.PreTrainedTokenizer) -> Dict:
"""Tokenize a list of strings."""
tokenized_list = [
tokenizer(
text,
return_tensors="pt",
padding="longest",
max_length=tokenizer.model_max_length,
truncation=True,
) for text in strings
]
input_ids = labels = [
tokenized.input_ids[0] for tokenized in tokenized_list
]
input_ids_lens = labels_lens = [
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
for tokenized in tokenized_list
]
return dict(
input_ids=input_ids,
labels=labels,
input_ids_lens=input_ids_lens,
labels_lens=labels_lens,
)
def _mask_targets(target, tokenized_lens, speakers):
# cur_idx = 0
cur_idx = tokenized_lens[0]
tokenized_lens = tokenized_lens[1:]
target[:cur_idx] = IGNORE_INDEX
for tokenized_len, speaker in zip(tokenized_lens, speakers):
if speaker == "human":
target[cur_idx + 2:cur_idx + tokenized_len] = IGNORE_INDEX
cur_idx += tokenized_len
def _add_speaker_and_signal(header, source, get_conversation=True):
"""Add speaker and start/end signal on each round."""
BEGIN_SIGNAL = "### "
END_SIGNAL = "\n"
conversation = header
for sentence in source:
from_str = sentence["from"]
if from_str.lower() == "human":
from_str = conversation_lib.default_conversation.roles[0]
elif from_str.lower() == "gpt":
from_str = conversation_lib.default_conversation.roles[1]
else:
from_str = 'unknown'
sentence["value"] = (BEGIN_SIGNAL + from_str + ": " +
sentence["value"] + END_SIGNAL)
if get_conversation:
conversation += sentence["value"]
conversation += BEGIN_SIGNAL
return conversation
def make_unify_datamodule(tokenizer, data_args, training_args):
data_ratio = data_args.data_ratio
data_ratio = data_ratio.split('||')
data_ratio = [int(data_) for data_ in data_ratio]
if training_args.is_handal:
egoexo_dataset = Handal_Dataset_train(json_path=data_args.region_json_path, tokenizer=tokenizer,data_args=data_args)
else:
egoexo_dataset = EgoExo_Dataset_train(json_path=data_args.region_json_path, tokenizer=tokenizer,data_args=data_args)
datasets = [egoexo_dataset]
# you can change 16 to your frequency sets, it represents how many samples to change tasks
train_dataset = UnifyDatasetSingleDatasetForBatch(datasets,data_ratio,16,fix_dataset_len=data_args.fix_dataset_len)
print(f'total unify dataset number is {len(train_dataset)}')
data_collator = DataCollatorForCOCODatasetV2(tokenizer=tokenizer)
return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator)
def make_unify_datamodule_joint(tokenizer, data_args, training_args):
data_ratio = data_args.data_ratio
data_ratio = data_ratio.split('||')
data_ratio = [int(data_) for data_ in data_ratio]
egoexo_dataset = EgoExo_Dataset_train(json_path=data_args.joint_json_ego2exo, tokenizer=tokenizer,data_args=data_args)
exoego_dataset = EgoExo_Dataset_train(json_path=data_args.joint_json_exo2ego, tokenizer=tokenizer,data_args=data_args)
datasets = [egoexo_dataset + exoego_dataset]
# you can change 16 to your frequency sets, it represents how many samples to change tasks
train_dataset = UnifyDatasetSingleDatasetForBatch(datasets,data_ratio,16,fix_dataset_len=data_args.fix_dataset_len)
print(f'total unify dataset number is {len(train_dataset)}')
data_collator = DataCollatorForCOCODatasetV2(tokenizer=tokenizer)
return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator)
def train():
global local_rank
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
local_rank = training_args.local_rank
compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
mask_cfg = get_mask_config(config=data_args.mask_config)
mask_cfg.MODEL.MASK_FORMER.SEG_TASK = data_args.seg_task
bnb_model_from_pretrained_args = {}
model = ObjectRelator.from_pretrained(
training_args.pretrained_model_path,
mask_decoder_cfg=mask_cfg,
add_cross_attn=True,
cache_dir=training_args.cache_dir,
**bnb_model_from_pretrained_args
)
model.config.use_cache = False
if model_args.freeze_backbone:
model.model.requires_grad_(False)
if training_args.gradient_checkpointing:
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=False,
)
if tokenizer.pad_token is None:
smart_tokenizer_and_embedding_resize(
special_tokens_dict=dict(pad_token="[PAD]"),
tokenizer=tokenizer,
model=model,
)
if model_args.version in conversation_lib.conv_templates:
conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version]
else:
conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"]
if model_args.vision_tower is not None:
model.get_model().initialize_vision_modules(
model_args=model_args,
fsdp=training_args.fsdp
)
vision_tower = model.get_vision_tower()
vision_tower.to(dtype=torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32), device=training_args.device)
data_args.image_processor = vision_tower.image_processor
data_args.is_multimodal = True
model.config.image_aspect_ratio = data_args.image_aspect_ratio
model.config.image_grid_pinpoints = data_args.image_grid_pinpoints
model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter
if model_args.tune_mm_mlp_adapter:
model.requires_grad_(False)
for p in model.get_model().mm_projector.parameters():
p.requires_grad = True
if not model_args.train_backbone:
model.model.vision_tower.requires_grad_(False)
model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter
if training_args.freeze_mm_mlp_adapter:
for p in model.get_model().mm_projector.parameters():
p.requires_grad = False
model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end
training_args.use_im_start_end = model_args.mm_use_im_start_end
model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token
model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer)
tokenizer.add_tokens("[SEG]")
model.resize_token_embeddings(len(tokenizer))
model.get_special_token(SEG=tokenizer("[SEG]", return_tensors='pt', add_special_tokens=False)['input_ids'], EOS=tokenizer.eos_token_id)
if training_args.joint_training:
if training_args.is_handal:
raise ValueError("Joint training is not supported for HANDAL dataset")
else:
data_module = make_unify_datamodule_joint(tokenizer=tokenizer, data_args=data_args, training_args=training_args)
else:
data_module = make_unify_datamodule(tokenizer=tokenizer, data_args=data_args, training_args=training_args)
training_args.dataloader_drop_last = True
# For Stage1 Training
if training_args.first_stage:
for name, param in model.named_parameters():
if "fuse_model" in name:
param.requires_grad = True
print(name)
else:
param.requires_grad = False
trainer = LLaVATrainerSSL(model=model,
tokenizer=tokenizer,
args=training_args,
**data_module)
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
trainer.save_state()
model.config.use_cache = True
if training_args.lora_enable:
state_dict = get_peft_state_maybe_zero_3(
model.named_parameters(), training_args.lora_bias
)
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(
model.named_parameters()
)
if training_args.local_rank == 0 or training_args.local_rank == -1:
model.config.save_pretrained(training_args.output_dir)
model.save_pretrained(training_args.output_dir, state_dict=state_dict)
torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin'))
else:
safe_save_model_for_hf_trainer(trainer=trainer,
output_dir=training_args.output_dir)
if __name__ == "__main__":
train()