|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from objectrelator.train.train_datasets import *
|
|
|
from datasets.egoexo_dataset import EgoExo_Dataset_train, Handal_Dataset_train
|
|
|
from objectrelator.mask_config.config import Config
|
|
|
|
|
|
from objectrelator.model.language_model.llava_phi import ObjectRelator
|
|
|
from objectrelator.train.llava_trainer_SSL import LLaVATrainerSSL
|
|
|
|
|
|
from objectrelator.mask_config.data_args import DataArguments, TrainingArguments, ModelArguments
|
|
|
from fvcore.common.config import CfgNode
|
|
|
import warnings
|
|
|
|
|
|
|
|
|
warnings.filterwarnings('ignore')
|
|
|
local_rank = None
|
|
|
|
|
|
def print_trainable_parm(model,prefix):
|
|
|
for name, module in model.named_modules():
|
|
|
print_flag = False
|
|
|
for p in module.parameters():
|
|
|
if p.requires_grad == True:
|
|
|
print(f'{prefix}: {name}')
|
|
|
print_flag = True
|
|
|
break
|
|
|
|
|
|
def get_mask_config(config='./objectrelator/mask_config/maskformer2_swin_base_384_bs16_50ep.yaml'):
|
|
|
cfg_coco = Config.fromfile(config)
|
|
|
cfg_base = CfgNode.load_yaml_with_base(config, allow_unsafe=True)
|
|
|
cfg_base.update(cfg_coco.__dict__.items())
|
|
|
cfg = cfg_base
|
|
|
cfg = Config(cfg)
|
|
|
return cfg
|
|
|
|
|
|
def print_dtype(model,prefix,dtype):
|
|
|
for name,p in model.named_parameters():
|
|
|
if p.dtype != dtype:
|
|
|
print(f'{prefix}: {name}')
|
|
|
print(p.dtype)
|
|
|
|
|
|
def rank0_print(*args):
|
|
|
if local_rank == 0:
|
|
|
print(*args)
|
|
|
|
|
|
|
|
|
def maybe_zero_3(param, ignore_status=False, name=None):
|
|
|
from deepspeed import zero
|
|
|
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
|
|
|
if hasattr(param, "ds_id"):
|
|
|
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
|
|
|
if not ignore_status:
|
|
|
logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}")
|
|
|
with zero.GatheredParameters([param]):
|
|
|
param = param.data.detach().cpu().clone()
|
|
|
else:
|
|
|
param = param.detach().cpu().clone()
|
|
|
return param
|
|
|
|
|
|
def get_peft_state_maybe_zero_3(named_params, bias):
|
|
|
if bias == "none":
|
|
|
to_return = {k: t for k, t in named_params if "lora_" in k}
|
|
|
elif bias == "all":
|
|
|
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
|
|
|
elif bias == "lora_only":
|
|
|
to_return = {}
|
|
|
maybe_lora_bias = {}
|
|
|
lora_bias_names = set()
|
|
|
for k, t in named_params:
|
|
|
if "lora_" in k:
|
|
|
to_return[k] = t
|
|
|
bias_name = k.split("lora_")[0] + "bias"
|
|
|
lora_bias_names.add(bias_name)
|
|
|
elif "bias" in k:
|
|
|
maybe_lora_bias[k] = t
|
|
|
for k, t in maybe_lora_bias:
|
|
|
if bias_name in lora_bias_names:
|
|
|
to_return[bias_name] = t
|
|
|
else:
|
|
|
raise NotImplementedError
|
|
|
to_return = {k: maybe_zero_3(v, name=k) for k, v in to_return.items()}
|
|
|
return to_return
|
|
|
|
|
|
|
|
|
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
|
|
|
to_return = {k: t for k, t in named_params if "lora_" not in k}
|
|
|
if require_grad_only:
|
|
|
to_return = {k: t for k, t in to_return.items() if t.requires_grad}
|
|
|
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
|
|
|
return to_return
|
|
|
|
|
|
|
|
|
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
|
|
|
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
|
|
|
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
|
|
|
return to_return
|
|
|
|
|
|
|
|
|
def find_all_linear_names(model):
|
|
|
cls = torch.nn.Linear
|
|
|
lora_module_names = set()
|
|
|
for name, module in model.named_modules():
|
|
|
if isinstance(module, cls):
|
|
|
names = name.split('.')
|
|
|
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
|
|
|
|
|
|
if 'lm_head' in lora_module_names:
|
|
|
lora_module_names.remove('lm_head')
|
|
|
return list(lora_module_names)
|
|
|
|
|
|
|
|
|
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer,
|
|
|
output_dir: str):
|
|
|
"""Collects the state dict and dump to disk."""
|
|
|
|
|
|
if getattr(trainer.args, "tune_mm_mlp_adapter", False):
|
|
|
|
|
|
keys_to_match = ['mm_projector']
|
|
|
if getattr(trainer.args, "use_im_start_end", False):
|
|
|
keys_to_match.extend(['embed_tokens', 'embed_in'])
|
|
|
|
|
|
weight_to_save = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), keys_to_match)
|
|
|
trainer.model.config.save_pretrained(output_dir)
|
|
|
|
|
|
current_folder = output_dir.split('/')[-1]
|
|
|
parent_folder = os.path.dirname(output_dir)
|
|
|
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1:
|
|
|
if current_folder.startswith('checkpoint-'):
|
|
|
mm_projector_folder = os.path.join(parent_folder, "mm_projector")
|
|
|
os.makedirs(mm_projector_folder, exist_ok=True)
|
|
|
torch.save(weight_to_save, os.path.join(mm_projector_folder, f'{current_folder}.bin'))
|
|
|
else:
|
|
|
torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin'))
|
|
|
return
|
|
|
|
|
|
if trainer.deepspeed:
|
|
|
torch.cuda.synchronize()
|
|
|
trainer.save_model(output_dir)
|
|
|
return
|
|
|
|
|
|
state_dict = trainer.model.state_dict()
|
|
|
if trainer.args.should_save:
|
|
|
cpu_state_dict = {
|
|
|
key: value.cpu()
|
|
|
for key, value in state_dict.items()
|
|
|
}
|
|
|
del state_dict
|
|
|
trainer._save(output_dir, state_dict=cpu_state_dict)
|
|
|
|
|
|
|
|
|
def smart_tokenizer_and_embedding_resize(
|
|
|
special_tokens_dict: Dict,
|
|
|
tokenizer: transformers.PreTrainedTokenizer,
|
|
|
model: transformers.PreTrainedModel,
|
|
|
):
|
|
|
"""Resize tokenizer and embedding.
|
|
|
|
|
|
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
|
|
|
"""
|
|
|
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
|
|
|
model.resize_token_embeddings(len(tokenizer))
|
|
|
|
|
|
if num_new_tokens > 0:
|
|
|
input_embeddings = model.get_input_embeddings().weight.data
|
|
|
output_embeddings = model.get_output_embeddings().weight.data
|
|
|
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
|
|
dim=0, keepdim=True)
|
|
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
|
|
dim=0, keepdim=True)
|
|
|
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
|
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
|
|
|
|
|
|
|
|
def _tokenize_fn(strings: Sequence[str],
|
|
|
tokenizer: transformers.PreTrainedTokenizer) -> Dict:
|
|
|
"""Tokenize a list of strings."""
|
|
|
tokenized_list = [
|
|
|
tokenizer(
|
|
|
text,
|
|
|
return_tensors="pt",
|
|
|
padding="longest",
|
|
|
max_length=tokenizer.model_max_length,
|
|
|
truncation=True,
|
|
|
) for text in strings
|
|
|
]
|
|
|
input_ids = labels = [
|
|
|
tokenized.input_ids[0] for tokenized in tokenized_list
|
|
|
]
|
|
|
input_ids_lens = labels_lens = [
|
|
|
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
|
|
|
for tokenized in tokenized_list
|
|
|
]
|
|
|
return dict(
|
|
|
input_ids=input_ids,
|
|
|
labels=labels,
|
|
|
input_ids_lens=input_ids_lens,
|
|
|
labels_lens=labels_lens,
|
|
|
)
|
|
|
|
|
|
|
|
|
def _mask_targets(target, tokenized_lens, speakers):
|
|
|
|
|
|
cur_idx = tokenized_lens[0]
|
|
|
tokenized_lens = tokenized_lens[1:]
|
|
|
target[:cur_idx] = IGNORE_INDEX
|
|
|
for tokenized_len, speaker in zip(tokenized_lens, speakers):
|
|
|
if speaker == "human":
|
|
|
target[cur_idx + 2:cur_idx + tokenized_len] = IGNORE_INDEX
|
|
|
cur_idx += tokenized_len
|
|
|
|
|
|
|
|
|
def _add_speaker_and_signal(header, source, get_conversation=True):
|
|
|
"""Add speaker and start/end signal on each round."""
|
|
|
BEGIN_SIGNAL = "### "
|
|
|
END_SIGNAL = "\n"
|
|
|
conversation = header
|
|
|
for sentence in source:
|
|
|
from_str = sentence["from"]
|
|
|
if from_str.lower() == "human":
|
|
|
from_str = conversation_lib.default_conversation.roles[0]
|
|
|
elif from_str.lower() == "gpt":
|
|
|
from_str = conversation_lib.default_conversation.roles[1]
|
|
|
else:
|
|
|
from_str = 'unknown'
|
|
|
sentence["value"] = (BEGIN_SIGNAL + from_str + ": " +
|
|
|
sentence["value"] + END_SIGNAL)
|
|
|
if get_conversation:
|
|
|
conversation += sentence["value"]
|
|
|
conversation += BEGIN_SIGNAL
|
|
|
return conversation
|
|
|
|
|
|
|
|
|
def make_unify_datamodule(tokenizer, data_args, training_args):
|
|
|
data_ratio = data_args.data_ratio
|
|
|
data_ratio = data_ratio.split('||')
|
|
|
data_ratio = [int(data_) for data_ in data_ratio]
|
|
|
|
|
|
if training_args.is_handal:
|
|
|
egoexo_dataset = Handal_Dataset_train(json_path=data_args.region_json_path, tokenizer=tokenizer,data_args=data_args)
|
|
|
else:
|
|
|
egoexo_dataset = EgoExo_Dataset_train(json_path=data_args.region_json_path, tokenizer=tokenizer,data_args=data_args)
|
|
|
datasets = [egoexo_dataset]
|
|
|
|
|
|
|
|
|
|
|
|
train_dataset = UnifyDatasetSingleDatasetForBatch(datasets,data_ratio,16,fix_dataset_len=data_args.fix_dataset_len)
|
|
|
print(f'total unify dataset number is {len(train_dataset)}')
|
|
|
data_collator = DataCollatorForCOCODatasetV2(tokenizer=tokenizer)
|
|
|
return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator)
|
|
|
|
|
|
|
|
|
def make_unify_datamodule_joint(tokenizer, data_args, training_args):
|
|
|
data_ratio = data_args.data_ratio
|
|
|
data_ratio = data_ratio.split('||')
|
|
|
data_ratio = [int(data_) for data_ in data_ratio]
|
|
|
|
|
|
egoexo_dataset = EgoExo_Dataset_train(json_path=data_args.joint_json_ego2exo, tokenizer=tokenizer,data_args=data_args)
|
|
|
exoego_dataset = EgoExo_Dataset_train(json_path=data_args.joint_json_exo2ego, tokenizer=tokenizer,data_args=data_args)
|
|
|
datasets = [egoexo_dataset + exoego_dataset]
|
|
|
|
|
|
|
|
|
|
|
|
train_dataset = UnifyDatasetSingleDatasetForBatch(datasets,data_ratio,16,fix_dataset_len=data_args.fix_dataset_len)
|
|
|
print(f'total unify dataset number is {len(train_dataset)}')
|
|
|
data_collator = DataCollatorForCOCODatasetV2(tokenizer=tokenizer)
|
|
|
return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator)
|
|
|
|
|
|
|
|
|
|
|
|
def train():
|
|
|
global local_rank
|
|
|
|
|
|
parser = transformers.HfArgumentParser(
|
|
|
(ModelArguments, DataArguments, TrainingArguments))
|
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
local_rank = training_args.local_rank
|
|
|
compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
|
|
|
|
|
|
mask_cfg = get_mask_config(config=data_args.mask_config)
|
|
|
mask_cfg.MODEL.MASK_FORMER.SEG_TASK = data_args.seg_task
|
|
|
bnb_model_from_pretrained_args = {}
|
|
|
|
|
|
model = ObjectRelator.from_pretrained(
|
|
|
training_args.pretrained_model_path,
|
|
|
mask_decoder_cfg=mask_cfg,
|
|
|
add_cross_attn=True,
|
|
|
cache_dir=training_args.cache_dir,
|
|
|
**bnb_model_from_pretrained_args
|
|
|
)
|
|
|
|
|
|
model.config.use_cache = False
|
|
|
if model_args.freeze_backbone:
|
|
|
model.model.requires_grad_(False)
|
|
|
if training_args.gradient_checkpointing:
|
|
|
if hasattr(model, "enable_input_require_grads"):
|
|
|
model.enable_input_require_grads()
|
|
|
else:
|
|
|
def make_inputs_require_grad(module, input, output):
|
|
|
output.requires_grad_(True)
|
|
|
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
|
|
|
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
|
|
model_args.model_name_or_path,
|
|
|
cache_dir=training_args.cache_dir,
|
|
|
model_max_length=training_args.model_max_length,
|
|
|
padding_side="right",
|
|
|
use_fast=False,
|
|
|
)
|
|
|
|
|
|
if tokenizer.pad_token is None:
|
|
|
smart_tokenizer_and_embedding_resize(
|
|
|
special_tokens_dict=dict(pad_token="[PAD]"),
|
|
|
tokenizer=tokenizer,
|
|
|
model=model,
|
|
|
)
|
|
|
if model_args.version in conversation_lib.conv_templates:
|
|
|
conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version]
|
|
|
else:
|
|
|
conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"]
|
|
|
|
|
|
if model_args.vision_tower is not None:
|
|
|
model.get_model().initialize_vision_modules(
|
|
|
model_args=model_args,
|
|
|
fsdp=training_args.fsdp
|
|
|
)
|
|
|
|
|
|
vision_tower = model.get_vision_tower()
|
|
|
vision_tower.to(dtype=torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32), device=training_args.device)
|
|
|
data_args.image_processor = vision_tower.image_processor
|
|
|
data_args.is_multimodal = True
|
|
|
|
|
|
model.config.image_aspect_ratio = data_args.image_aspect_ratio
|
|
|
model.config.image_grid_pinpoints = data_args.image_grid_pinpoints
|
|
|
|
|
|
model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter
|
|
|
if model_args.tune_mm_mlp_adapter:
|
|
|
model.requires_grad_(False)
|
|
|
for p in model.get_model().mm_projector.parameters():
|
|
|
p.requires_grad = True
|
|
|
if not model_args.train_backbone:
|
|
|
model.model.vision_tower.requires_grad_(False)
|
|
|
|
|
|
|
|
|
model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter
|
|
|
if training_args.freeze_mm_mlp_adapter:
|
|
|
for p in model.get_model().mm_projector.parameters():
|
|
|
p.requires_grad = False
|
|
|
|
|
|
|
|
|
model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end
|
|
|
training_args.use_im_start_end = model_args.mm_use_im_start_end
|
|
|
model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token
|
|
|
model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer)
|
|
|
|
|
|
tokenizer.add_tokens("[SEG]")
|
|
|
model.resize_token_embeddings(len(tokenizer))
|
|
|
model.get_special_token(SEG=tokenizer("[SEG]", return_tensors='pt', add_special_tokens=False)['input_ids'], EOS=tokenizer.eos_token_id)
|
|
|
|
|
|
if training_args.joint_training:
|
|
|
if training_args.is_handal:
|
|
|
raise ValueError("Joint training is not supported for HANDAL dataset")
|
|
|
else:
|
|
|
data_module = make_unify_datamodule_joint(tokenizer=tokenizer, data_args=data_args, training_args=training_args)
|
|
|
else:
|
|
|
data_module = make_unify_datamodule(tokenizer=tokenizer, data_args=data_args, training_args=training_args)
|
|
|
training_args.dataloader_drop_last = True
|
|
|
|
|
|
|
|
|
if training_args.first_stage:
|
|
|
for name, param in model.named_parameters():
|
|
|
if "fuse_model" in name:
|
|
|
param.requires_grad = True
|
|
|
print(name)
|
|
|
else:
|
|
|
param.requires_grad = False
|
|
|
|
|
|
trainer = LLaVATrainerSSL(model=model,
|
|
|
tokenizer=tokenizer,
|
|
|
args=training_args,
|
|
|
**data_module)
|
|
|
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
|
|
|
trainer.train(resume_from_checkpoint=True)
|
|
|
else:
|
|
|
trainer.train()
|
|
|
trainer.save_state()
|
|
|
|
|
|
model.config.use_cache = True
|
|
|
|
|
|
if training_args.lora_enable:
|
|
|
state_dict = get_peft_state_maybe_zero_3(
|
|
|
model.named_parameters(), training_args.lora_bias
|
|
|
)
|
|
|
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(
|
|
|
model.named_parameters()
|
|
|
)
|
|
|
if training_args.local_rank == 0 or training_args.local_rank == -1:
|
|
|
model.config.save_pretrained(training_args.output_dir)
|
|
|
model.save_pretrained(training_args.output_dir, state_dict=state_dict)
|
|
|
torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin'))
|
|
|
else:
|
|
|
safe_save_model_for_hf_trainer(trainer=trainer,
|
|
|
output_dir=training_args.output_dir)
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
train()
|
|
|
|