File size: 12,552 Bytes
fe6c2e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import copy
import logging

import numpy as np
import torch
import random
import cv2

from detectron2.config import configurable
from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T
from detectron2.structures import BitMasks
from pycocotools import mask as coco_mask
from pycocotools.mask import encode, decode, frPyObjects


def draw_circle(mask, center, radius):
    y, x = np.ogrid[:mask.shape[0], :mask.shape[1]]
    distance = np.sqrt((x - center[1]) ** 2 + (y - center[0]) ** 2)
    mask[distance <= radius] = 1


def enhance_with_circles(binary_mask, radius=5):
    if not isinstance(binary_mask, np.ndarray):
        binary_mask = np.array(binary_mask)

    binary_mask = binary_mask.astype(np.uint8)

    output_mask = np.zeros_like(binary_mask, dtype=np.uint8)
    points = np.argwhere(binary_mask == 1)
    for point in points:
        draw_circle(output_mask, (point[0], point[1]), radius)
    return output_mask


def is_mask_non_empty(rle_mask):
    if rle_mask is None:
        return False
    binary_mask = decode(rle_mask)
    return binary_mask.sum() > 0


def convert_coco_poly_to_mask(segmentations, height, width):
    masks = []
    for polygons in segmentations:
        rles = coco_mask.frPyObjects(polygons, height, width)
        mask = coco_mask.decode(rles)
        if len(mask.shape) < 3:
            mask = mask[..., None]
        mask = torch.as_tensor(mask, dtype=torch.uint8)
        mask = mask.any(dim=2)
        masks.append(mask)
    if masks:
        masks = torch.stack(masks, dim=0)
    else:
        masks = torch.zeros((0, height, width), dtype=torch.uint8)
    return masks


def build_transform_gen(cfg):
    """
    Create a list of default :class:`Augmentation` from config.
    Now it includes resizing and flipping.
    Returns:
        list[Augmentation]
    """
    image_size = cfg.INPUT.IMAGE_SIZE
    min_scale = cfg.INPUT.MIN_SCALE
    max_scale = cfg.INPUT.MAX_SCALE

    augmentation = []

    # if cfg.INPUT.RANDOM_FLIP != "none":
    #     augmentation.append(
    #         T.RandomFlip(
    #             horizontal=cfg.INPUT.RANDOM_FLIP == "horizontal",
    #             vertical=cfg.INPUT.RANDOM_FLIP == "vertical",
    #         )
    #     )

    augmentation.extend([
        # T.ResizeScale(
        #     min_scale=min_scale, max_scale=max_scale, target_height=image_size, target_width=image_size
        # ),
        T.ResizeShortestEdge(
            short_edge_length=image_size, max_size=image_size
        ),
        T.FixedSizeCrop(crop_size=(image_size, image_size), seg_pad_value=0),
    ])

    return augmentation


class COCOInstanceNewBaselineDatasetMapper:
    """
    A callable which takes a dataset dict in Detectron2 Dataset format,
    and map it into a format used by MaskFormer.

    This dataset mapper applies the same transformation as DETR for COCO panoptic segmentation.

    The callable currently does the following:

    1. Read the image from "file_name"
    2. Applies geometric transforms to the image and annotation
    3. Find and applies suitable cropping to the image and annotation
    4. Prepare image and annotation to Tensors
    """

    def __init__(self, cfg):
        """
        NOTE: this interface is experimental.
        Args:
            is_train: for training or inference
            augmentations: a list of augmentations or deterministic transforms to apply
            tfm_gens: data augmentation
            image_format: an image format supported by :func:`detection_utils.read_image`.
        """
        self.tfm_gens = build_transform_gen(cfg)
        self.pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
        self.pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)

    @classmethod
    def from_config(cls, cfg, is_train=True):
        # Build augmentation
        tfm_gens = build_transform_gen(cfg, is_train)

        ret = {
            "is_train": is_train,
            "tfm_gens": tfm_gens,
            "image_format": cfg.INPUT.FORMAT,
        }
        return ret

    def preprocess(self, dataset_dict, region_mask_type=None, mask_format='polygon'):
        """
        Args:
            dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.

        Returns:
            dict: a format that builtin models in detectron2 accept
        """
        dataset_dict = copy.deepcopy(dataset_dict)  # it will be modified by code below
        if isinstance(dataset_dict["file_name"],str):
            image = utils.read_image(dataset_dict["file_name"], format='RGB')
        else:
            image = np.array(dataset_dict["file_name"])
        # print(dataset_dict)
        # print(image)
        utils.check_image_size(dataset_dict, image)
        utils.check_image_size(dataset_dict, image)

        gt_masks_list = []
        for ann in dataset_dict["annotations"]:
            mask_tmp = decode(ann["segmentation"])
            gt_masks_list.append(mask_tmp)
        dataset_dict["gt_mask_list"] = gt_masks_list
        dataset_dict["vp_file_path"] = dataset_dict["vp_image"]

        padding_mask = np.ones(image.shape[:2])

        image, transforms = T.apply_transform_gens(self.tfm_gens, image)
        # the crop transformation has default padding value 0 for segmentation
        padding_mask = transforms.apply_segmentation(padding_mask)
        padding_mask = ~ padding_mask.astype(bool)

        image_shape = image.shape[:2]  
        image = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))
        dataset_dict["image"] = (image - self.pixel_mean) / self.pixel_std
        dataset_dict["padding_mask"] = torch.as_tensor(np.ascontiguousarray(padding_mask))
        dataset_dict['transforms'] = transforms
        region_masks = []

        if 'vp_image' in dataset_dict:
            if isinstance(dataset_dict["vp_image"], str):
                vp_image = utils.read_image(dataset_dict["vp_image"], format='RGB')
            else:
                vp_image = np.array(dataset_dict["vp_image"])

            vp_padding_mask = np.ones(vp_image.shape[:2])

            vp_image, vp_transforms = T.apply_transform_gens(self.tfm_gens, vp_image)
            vp_padding_mask = vp_transforms.apply_segmentation(vp_padding_mask)
            vp_padding_mask = ~ vp_padding_mask.astype(bool)

            #1024x1024
            vp_image_shape = vp_image.shape[:2]  
            vp_image = torch.as_tensor(np.ascontiguousarray(vp_image.transpose(2, 0, 1)))
            dataset_dict["vp_image"] = (vp_image - self.pixel_mean) / self.pixel_std
            dataset_dict["vp_padding_mask"] = torch.as_tensor(np.ascontiguousarray(vp_padding_mask))
            dataset_dict['vp_transforms'] = vp_transforms
            vp_region_masks = []
            vp_fill_number = []
            vp_annos = [
                utils.transform_instance_annotations(obj, vp_transforms, vp_image_shape)
                for obj in dataset_dict.pop("vp_annotations")
                if obj.get("iscrowd", 0) == 0
            ]
            if len(vp_annos) == 0:
                print('error')
            else:
                for vp_anno in vp_annos:
                    vp_region_mask = vp_anno['segmentation']
                    vp_fill_number.append(int(vp_anno['category_id']))
                    # vp_scale_region_mask = transforms.apply_segmentation(vp_region_mask)
                    vp_region_masks.append(vp_region_mask)
           


        if "annotations" in dataset_dict:
            for anno in dataset_dict["annotations"]:
                anno.pop("keypoints", None)

            annotations = dataset_dict['annotations']

            annos = [
                utils.transform_instance_annotations(obj, transforms, image_shape)
                for obj in dataset_dict.pop("annotations")
                if obj.get("iscrowd", 0) == 0 
            ]
            if len(annos) ==0:
                print('error')
                
            filter_annos = []

            if 'mask_visual_prompt_mask' in annos[0]:
                if region_mask_type is None:
                    region_mask_type = ['mask_visual_prompt_mask']


                for anno in annos:
                    non_empty_masks = []
                    for mask_type in region_mask_type:
                        if is_mask_non_empty(anno[mask_type]):
                            non_empty_masks.append(mask_type)
                    # assert non_empty_masks, 'No visual prompt found in {}'.format(dataset_dict['file_name'])
                    if len(non_empty_masks) == 0:
                        continue
                    used_mask_type = random.choice(non_empty_masks)
                    region_mask = decode(anno[used_mask_type])
                    if used_mask_type in ['point_visual_prompt_mask', 'scribble_visual_prompt_mask']:
                        radius = 10 if used_mask_type == 'point_visual_prompt_mask' else 5
                        region_mask = enhance_with_circles(region_mask, radius)
                    scale_region_mask = transforms.apply_segmentation(region_mask)
                    region_masks.append(scale_region_mask)
                    filter_annos.append(anno)
            if len(filter_annos) == 0:
                filter_annos = annos
            # NOTE: does not support BitMask due to augmentation
            # Current BitMask cannot handle empty objects
            # instances = utils.annotations_to_instances(annos, image_shape)
            instances = utils.annotations_to_instances(filter_annos, image_shape, mask_format=mask_format)  # null_mask:生成instances的函数
            if 'lvis_category_id' in filter_annos[0]:
                lvis_classes = [int(obj["lvis_category_id"]) for obj in annos]
                lvis_classes = torch.tensor(lvis_classes, dtype=torch.int64)
                instances.lvis_classes = lvis_classes
            instances.gt_boxes = instances.gt_masks.get_bounding_boxes()

            # non_empty_instance_mask = [len(obj.get('segmentation', [])) > 0 for obj in annos]
            non_empty_instance_mask = [len(obj.get('segmentation', [])) > 0 for obj in filter_annos]
    
            # Need to filter empty instances first (due to augmentation)
            instances = utils.filter_empty_instances(instances) # debug null_mask
            
            # Generate masks from polygon
            h, w = instances.image_size
            # image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float)
            if hasattr(instances, 'gt_masks'):
                gt_masks = instances.gt_masks
                if hasattr(gt_masks,'polygons'):
                    gt_masks = convert_coco_poly_to_mask(gt_masks.polygons, h, w)
                else:
                    gt_masks = gt_masks.tensor.to(dtype=torch.uint8)
                instances.gt_masks = gt_masks

            if region_masks:
                region_masks = [m for m, keep in zip(region_masks, non_empty_instance_mask) if keep]
                assert len(region_masks) == len(instances), 'The number of region masks must match the number of instances'
                region_masks = BitMasks(
                    torch.stack([torch.from_numpy(np.ascontiguousarray(x)) for x in region_masks])
                )
                instances.region_masks = region_masks

            if 'vp_image' in dataset_dict:
                vp_region_masks = BitMasks(
                    torch.stack([torch.from_numpy(np.ascontiguousarray(x)) for x in vp_region_masks])
                )
                instances.vp_region_masks = vp_region_masks
                instances.vp_fill_number = torch.tensor(vp_fill_number, dtype=torch.int64)

            dataset_dict["instances"] = instances
        return dataset_dict


def build_transform_gen_for_eval(cfg):
    image_size = cfg.INPUT.IMAGE_SIZE
    min_scale = cfg.INPUT.MIN_SCALE
    max_scale = cfg.INPUT.MAX_SCALE

    augmentation = []


    augmentation.extend([
        T.ResizeShortestEdge(
            short_edge_length=image_size, max_size=image_size
        ),
        T.FixedSizeCrop(crop_size=(image_size, image_size), seg_pad_value=0),
    ])

    return augmentation


class COCOInstanceNewBaselineDatasetMapperForEval(COCOInstanceNewBaselineDatasetMapper):
    def __init__(self, cfg):
        super().__init__(cfg)
        self.tfm_gens = build_transform_gen_for_eval(cfg)
        self.pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
        self.pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)