|
|
import copy
|
|
|
import logging
|
|
|
|
|
|
import numpy as np
|
|
|
import torch
|
|
|
import random
|
|
|
import cv2
|
|
|
|
|
|
from detectron2.config import configurable
|
|
|
from detectron2.data import detection_utils as utils
|
|
|
from detectron2.data import transforms as T
|
|
|
from detectron2.structures import BitMasks, Boxes, Instances
|
|
|
from pycocotools import mask as coco_mask
|
|
|
from pycocotools.mask import encode, decode, frPyObjects
|
|
|
|
|
|
|
|
|
def draw_circle(mask, center, radius):
|
|
|
y, x = np.ogrid[:mask.shape[0], :mask.shape[1]]
|
|
|
distance = np.sqrt((x - center[1]) ** 2 + (y - center[0]) ** 2)
|
|
|
mask[distance <= radius] = 1
|
|
|
|
|
|
|
|
|
def enhance_with_circles(binary_mask, radius=5):
|
|
|
if not isinstance(binary_mask, np.ndarray):
|
|
|
binary_mask = np.array(binary_mask)
|
|
|
|
|
|
binary_mask = binary_mask.astype(np.uint8)
|
|
|
|
|
|
output_mask = np.zeros_like(binary_mask, dtype=np.uint8)
|
|
|
points = np.argwhere(binary_mask == 1)
|
|
|
for point in points:
|
|
|
draw_circle(output_mask, (point[0], point[1]), radius)
|
|
|
return output_mask
|
|
|
|
|
|
|
|
|
def is_mask_non_empty(rle_mask):
|
|
|
if rle_mask is None:
|
|
|
return False
|
|
|
binary_mask = decode(rle_mask)
|
|
|
return binary_mask.sum() > 0
|
|
|
|
|
|
|
|
|
def convert_coco_poly_to_mask(segmentations, height, width):
|
|
|
masks = []
|
|
|
for polygons in segmentations:
|
|
|
rles = coco_mask.frPyObjects(polygons, height, width)
|
|
|
mask = coco_mask.decode(rles)
|
|
|
if len(mask.shape) < 3:
|
|
|
mask = mask[..., None]
|
|
|
mask = torch.as_tensor(mask, dtype=torch.uint8)
|
|
|
mask = mask.any(dim=2)
|
|
|
masks.append(mask)
|
|
|
if masks:
|
|
|
masks = torch.stack(masks, dim=0)
|
|
|
else:
|
|
|
masks = torch.zeros((0, height, width), dtype=torch.uint8)
|
|
|
return masks
|
|
|
|
|
|
|
|
|
def build_transform_gen(cfg):
|
|
|
"""
|
|
|
Create a list of default :class:`Augmentation` from config.
|
|
|
Now it includes resizing and flipping.
|
|
|
Returns:
|
|
|
list[Augmentation]
|
|
|
"""
|
|
|
image_size = cfg.INPUT.IMAGE_SIZE
|
|
|
min_scale = cfg.INPUT.MIN_SCALE
|
|
|
max_scale = cfg.INPUT.MAX_SCALE
|
|
|
|
|
|
augmentation = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
augmentation.extend([
|
|
|
|
|
|
|
|
|
|
|
|
T.ResizeShortestEdge(
|
|
|
short_edge_length=image_size, max_size=image_size
|
|
|
),
|
|
|
T.FixedSizeCrop(crop_size=(image_size, image_size), seg_pad_value=0),
|
|
|
])
|
|
|
|
|
|
return augmentation
|
|
|
|
|
|
|
|
|
class COCOSemanticNewBaselineDatasetMapper:
|
|
|
"""
|
|
|
A callable which takes a dataset dict in Detectron2 Dataset format,
|
|
|
and map it into a format used by MaskFormer.
|
|
|
|
|
|
This dataset mapper applies the same transformation as DETR for COCO panoptic segmentation.
|
|
|
|
|
|
The callable currently does the following:
|
|
|
|
|
|
1. Read the image from "file_name"
|
|
|
2. Applies geometric transforms to the image and annotation
|
|
|
3. Find and applies suitable cropping to the image and annotation
|
|
|
4. Prepare image and annotation to Tensors
|
|
|
"""
|
|
|
|
|
|
def __init__(self, cfg):
|
|
|
"""
|
|
|
NOTE: this interface is experimental.
|
|
|
Args:
|
|
|
is_train: for training or inference
|
|
|
augmentations: a list of augmentations or deterministic transforms to apply
|
|
|
tfm_gens: data augmentation
|
|
|
image_format: an image format supported by :func:`detection_utils.read_image`.
|
|
|
"""
|
|
|
self.tfm_gens = build_transform_gen(cfg)
|
|
|
self.pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
|
|
|
self.pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
|
|
|
|
|
|
@classmethod
|
|
|
def from_config(cls, cfg, is_train=True):
|
|
|
|
|
|
tfm_gens = build_transform_gen(cfg, is_train)
|
|
|
|
|
|
ret = {
|
|
|
"is_train": is_train,
|
|
|
"tfm_gens": tfm_gens,
|
|
|
"image_format": cfg.INPUT.FORMAT,
|
|
|
}
|
|
|
return ret
|
|
|
|
|
|
def preprocess(self, dataset_dict, region_mask_type=None, mask_format='polygon',ignore_label=255):
|
|
|
"""
|
|
|
Args:
|
|
|
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.
|
|
|
|
|
|
Returns:
|
|
|
dict: a format that builtin models in detectron2 accept
|
|
|
"""
|
|
|
ignore_label = ignore_label
|
|
|
dataset_dict = copy.deepcopy(dataset_dict)
|
|
|
image = utils.read_image(dataset_dict["file_name"], format='RGB')
|
|
|
utils.check_image_size(dataset_dict, image)
|
|
|
|
|
|
|
|
|
|
|
|
padding_mask = np.ones(image.shape[:2])
|
|
|
|
|
|
image, transforms = T.apply_transform_gens(self.tfm_gens, image)
|
|
|
|
|
|
padding_mask = transforms.apply_segmentation(padding_mask)
|
|
|
padding_mask = ~ padding_mask.astype(bool)
|
|
|
|
|
|
image_shape = image.shape[:2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))
|
|
|
dataset_dict["image"] = (image - self.pixel_mean) / self.pixel_std
|
|
|
dataset_dict["padding_mask"] = torch.as_tensor(np.ascontiguousarray(padding_mask))
|
|
|
dataset_dict['transforms'] = transforms
|
|
|
|
|
|
|
|
|
if "sem_seg_file_name" in dataset_dict:
|
|
|
|
|
|
sem_seg_gt = utils.read_image(dataset_dict["sem_seg_file_name"]).astype("double")
|
|
|
else:
|
|
|
sem_seg_gt = None
|
|
|
if sem_seg_gt is None:
|
|
|
raise ValueError(
|
|
|
"Cannot find 'sem_seg_file_name' for semantic segmentation dataset {}.".format(
|
|
|
dataset_dict["file_name"]
|
|
|
)
|
|
|
)
|
|
|
sem_seg_gt += 1
|
|
|
sem_seg_gt = transforms.apply_segmentation(sem_seg_gt)
|
|
|
if sem_seg_gt is not None:
|
|
|
sem_seg_gt = torch.as_tensor(sem_seg_gt.astype("long"))
|
|
|
sem_seg_gt[sem_seg_gt==0] = ignore_label + 1
|
|
|
sem_seg_gt -= 1
|
|
|
if sem_seg_gt is not None:
|
|
|
dataset_dict["sem_seg"] = sem_seg_gt.long()
|
|
|
if sem_seg_gt is not None:
|
|
|
sem_seg_gt = sem_seg_gt.numpy()
|
|
|
instances = Instances(image_shape)
|
|
|
classes = np.unique(sem_seg_gt)
|
|
|
|
|
|
classes = classes[classes != ignore_label]
|
|
|
|
|
|
if 'segments_info' in dataset_dict:
|
|
|
segments_info = dataset_dict["segments_info"]
|
|
|
for segment_info in segments_info:
|
|
|
class_id = segment_info["category_id"]
|
|
|
if not segment_info["iscrowd"]:
|
|
|
if class_id not in classes:
|
|
|
print('Wrong samples. Can not match panoptic gt and semantic gt')
|
|
|
instances.gt_classes = torch.tensor(classes, dtype=torch.int64)
|
|
|
|
|
|
masks = []
|
|
|
for class_id in classes:
|
|
|
masks.append(sem_seg_gt == class_id)
|
|
|
|
|
|
if len(masks) == 0:
|
|
|
|
|
|
instances.gt_masks = torch.zeros((0, sem_seg_gt.shape[-2], sem_seg_gt.shape[-1]))
|
|
|
else:
|
|
|
masks = BitMasks(
|
|
|
torch.stack([torch.from_numpy(np.ascontiguousarray(x.copy())) for x in masks])
|
|
|
)
|
|
|
instances.gt_masks = masks.tensor
|
|
|
|
|
|
dataset_dict["instances"] = instances
|
|
|
|
|
|
return dataset_dict
|
|
|
|
|
|
|
|
|
|
|
|
def build_transform_gen_for_eval(cfg):
|
|
|
image_size = cfg.INPUT.IMAGE_SIZE
|
|
|
min_scale = cfg.INPUT.MIN_SCALE
|
|
|
max_scale = cfg.INPUT.MAX_SCALE
|
|
|
|
|
|
augmentation = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
augmentation.extend([
|
|
|
T.ResizeShortestEdge(
|
|
|
short_edge_length=image_size, max_size=image_size
|
|
|
),
|
|
|
T.FixedSizeCrop(crop_size=(image_size, image_size), seg_pad_value=0),
|
|
|
])
|
|
|
|
|
|
return augmentation
|
|
|
|
|
|
|
|
|
class COCOPanopticNewBaselineDatasetMapperForEval(COCOSemanticNewBaselineDatasetMapper):
|
|
|
def __init__(self, cfg):
|
|
|
super().__init__(cfg)
|
|
|
self.tfm_gens = build_transform_gen_for_eval(cfg)
|
|
|
self.pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
|
|
|
self.pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
|
|
|
|