# Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import shutil from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig import torch from objectrelator.model import * from objectrelator.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN from objectrelator.train.train_datasets import get_mask_config from objectrelator.model.language_model.llava_phi import PSALM, PSALMForDAVISEval, ObjectRelator def load_pretrained_model(model_path, model_base, model_name, model_args, mask_config='./objectrelator/mask_config/maskformer2_swin_base_384_bs16_50ep.yaml', load_8bit=False, load_4bit=False, device_map="auto", device="cuda"): kwargs = {"device_map": 'cpu'} if load_8bit: kwargs['load_in_8bit'] = True elif load_4bit: kwargs['load_in_4bit'] = True kwargs['quantization_config'] = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4' ) else: kwargs['torch_dtype'] = torch.float16 model_map = { 'psalm': PSALM, 'psalm_video': PSALMForDAVISEval, 'ObjectRelator': ObjectRelator } mask_cfg = get_mask_config(mask_config) mask_cfg.MODEL.MASK_FORMER.SEG_TASK = model_args.seg_task if hasattr(model_args, 'seg_task') else 'instance' tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) if model_name not in model_map: raise ValueError(f"Model {model_name} is not supported. Supported models are: {list(model_map.keys())}") model_map_name = model_name #debug print(f'current model is {model_map_name}') model = model_map[model_map_name].from_pretrained(model_path, mask_decoder_cfg=mask_cfg, **kwargs) vision_tower = model.get_vision_tower() vision_tower.to(device=device) image_processor = vision_tower.image_processor if hasattr(model.config, "max_sequence_length"): context_len = model.config.max_sequence_length else: context_len = 2048 return tokenizer, model, image_processor, context_len