from abc import ABC, abstractmethod import os import copy import torch import torch.nn as nn import torch.nn.functional as F import math from einops import rearrange def pairwise_cos_sim(x1: torch.Tensor, x2: torch.Tensor): """ return pair-wise similarity matrix between two tensors :param x1: [B,...,M,D] :param x2: [B,...,N,D] :return: similarity matrix [B,...,M,N] """ x1 = F.normalize(x1, dim=-1) x2 = F.normalize(x2, dim=-1) sim = torch.matmul(x1, x2.transpose(-2, -1)) return sim def rand_sample(x, max_len): if x.shape[0] <= max_len: return x else: rand_idx = torch.randperm(x.shape[0])[:max_len] return x[rand_idx, :] # def rand_sample_repeat(x, max_len): # # debug: 处理空张量情况 # if x.shape[0] == 0: # # 创建一个全零张量作为替代 # # 假设每个点包含2维坐标 (x,y) # return torch.zeros(max_len, x.shape[1] if len(x.shape) > 1 else 2, device=x.device, dtype=x.dtype) # if x.shape[0] < max_len: # indices = torch.randint(0, x.shape[0], (max_len - x.shape[0],)) # # pdb.set_trace() # return torch.cat((x, x[indices]), dim=0) # elif x.shape[0] == max_len: # return x # else: # rand_idx = torch.randperm(x.shape[0])[:max_len] # return x[rand_idx, :] # debug: ours def rand_sample_repeat(x, max_len): # debug: 处理空张量情况 if x.shape[0] == 0: # 创建一个全零张量作为替代 # 假设每个点包含2维坐标 (x,y) return torch.zeros(max_len, x.shape[1] if len(x.shape) > 1 else 2, device=x.device, dtype=x.dtype) if x.shape[0] < max_len: if x.shape[0] == 0: # 如果 x.shape[0] 为 0,直接返回全零张量 return torch.zeros(max_len, x.shape[1] if len(x.shape) > 1 else 2, device=x.device, dtype=x.dtype) indices = torch.randint(0, x.shape[0], (max_len - x.shape[0],)) return torch.cat((x, x[indices]), dim=0) elif x.shape[0] == max_len: return x else: rand_idx = torch.randperm(x.shape[0])[:max_len] return x[rand_idx, :] def point_sample(input, point_coords, return_dtype, **kwargs): """ A wrapper around :function:`torch.nn.functional.grid_sample` to support 3D point_coords tensors. Unlike :function:`torch.nn.functional.grid_sample` it assumes `point_coords` to lie inside [0, 1] x [0, 1] square. Args: input (Tensor): A tensor of shape (N, C, H, W) that contains features map on a H x W grid. point_coords (Tensor): A tensor of shape (N, P, 2) or (N, Hgrid, Wgrid, 2) that contains [0, 1] x [0, 1] normalized point coordinates. Returns: output (Tensor): A tensor of shape (N, C, P) or (N, C, Hgrid, Wgrid) that contains features for points in `point_coords`. The features are obtained via bilinear interplation from `input` the same way as :function:`torch.nn.functional.grid_sample`. """ add_dim = False if point_coords.dim() == 3: add_dim = True point_coords = point_coords.unsqueeze(2) # output = F.grid_sample(input, 2.0 * point_coords - 1.0, **kwargs) output = F.grid_sample(input.float(), (2.0 * point_coords - 1.0).float().to(input.device), **kwargs) output = output.to(return_dtype) if add_dim: output = output.squeeze(3) return output def farthest_point_sample(xyz, npoint): """ Input: xyz: pointcloud data, [B, N, 2] npoint: number of samples Return: centroids: sampled pointcloud index, [B, npoint] """ device = xyz.device B, N, C = xyz.shape centroids = torch.zeros(B, npoint, dtype=torch.long).to(device) distance = torch.ones(B, N).to(device) * 1e10 farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device) batch_indices = torch.arange(B, dtype=torch.long).to(device) for i in range(npoint): centroids[:, i] = farthest centroid = xyz[batch_indices, farthest, :].view(B, 1, 2) dist = torch.sum((xyz - centroid) ** 2, -1) distance = torch.min(distance, dist) farthest = torch.max(distance, -1)[1] return centroids def index_points(points, idx): """ Input: points: input points data, [B, N, C] idx: sample index data, [B, S] Return: new_points:, indexed points data, [B, S, C] """ device = points.device B = points.shape[0] view_shape = list(idx.shape) view_shape[1:] = [1] * (len(view_shape) - 1) repeat_shape = list(idx.shape) repeat_shape[0] = 1 batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape) new_points = points[batch_indices, idx, :] return new_points def square_distance(src, dst): """ Calculate Euclid distance between each two points. src^T * dst = xn * xm + yn * ym + zn * zm; sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn; sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm; dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2 = sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst Input: src: source points, [B, N, C] dst: target points, [B, M, C] Output: dist: per-point square distance, [B, N, M] """ B, N, _ = src.shape _, M, _ = dst.shape dist = -2 * torch.matmul(src, dst.permute(0, 2, 1)) dist += torch.sum(src ** 2, -1).view(B, N, 1) dist += torch.sum(dst ** 2, -1).view(B, 1, M) return dist def knn_point(nsample, xyz, new_xyz): """ Input: nsample: max sample number in local region xyz: all points, [B, N, C] new_xyz: query points, [B, S, C] Return: group_idx: grouped points index, [B, S, nsample] """ sqrdists = square_distance(new_xyz, xyz) _, group_idx = torch.topk(sqrdists, nsample, dim=-1, largest=False, sorted=False) return group_idx class ConvReLULN1D(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, bias=True): super(ConvReLULN1D, self).__init__() self.act = nn.ReLU(inplace=True) self.net = nn.Sequential( nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, bias=bias), self.act ) self.norm = nn.LayerNorm(out_channels) def forward(self, x): # (B, C, N) -> (B, C_1, N) x = self.net(x) x = x.permute(0, 2, 1) x = self.norm(x) x = x.permute(0, 2, 1) return x def normal_init(module, mean=0, std=1, bias=0): if hasattr(module, 'weight') and module.weight is not None: nn.init.normal_(module.weight, mean, std) if hasattr(module, 'bias') and module.bias is not None: nn.init.constant_(module.bias, bias) class GeoRegionSampler(nn.Module): def __init__(self, input_dim, output_dim, num_init_point, num_sub_point, num_neighbor, pooler_mode='mean'): super(GeoRegionSampler, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.num_init_point = num_init_point self.num_sub_point = num_sub_point self.num_neighbor = num_neighbor self.diff_projector_list = nn.ModuleList() self.agg_projector_list = nn.ModuleList() self.pooler_list = nn.ModuleList() for ii in range(len(num_sub_point)): self.diff_projector_list.append(nn.Linear(self.input_dim + 2, self.input_dim + 2)) self.agg_projector_list.append(ConvReLULN1D(in_channels=2 * (self.input_dim + 2), out_channels=self.input_dim, )) if pooler_mode == 'mean': self.pooler_list.append(nn.AvgPool1d(kernel_size=num_neighbor[ii])) elif pooler_mode == 'max': self.pooler_list.append(nn.AdaptiveMaxPool1d(output_size=1)) else: raise NotImplementedError(f'{self.pooler_mode} is not supported.') self.flatten_projector = nn.Linear(self.input_dim * num_sub_point[-1], self.input_dim) self.dim_projector = nn.Linear(self.input_dim, self.output_dim) self.norm_init_weights() # self.dtype = torch.float32 def norm_init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): normal_init(m, 0, 0.01) def forward(self, feature_map, region_masks, original_dtype, return_dtype): assert len(feature_map) == len(region_masks) all_points = [] all_points_fea = [] all_points_img_ids = [] # Sample points and their features for img_idx, (region_feature_map_i, region_masks_list_i) in enumerate(zip(feature_map, region_masks)): if len(region_masks_list_i) != 0: # (w, h) ori_image_wh = torch.tensor([region_masks_list_i[0].shape[0], region_masks_list_i[0].shape[1]], device=region_masks_list_i[0].device)[None,] # list of elements of shape [num_sample_point, 2] cur_non_zero_pos = [rand_sample_repeat((m.nonzero() / ori_image_wh), self.num_init_point) for m in region_masks_list_i] # list -> [num_mask, num_sample_point, 2] cur_non_zero_pos = torch.stack(cur_non_zero_pos) # [HxW, C] -> [H, W, C] -> [C, H, W] -> [N, C, H, W] h = w = int(math.sqrt(region_feature_map_i.shape[0])) c = region_feature_map_i.shape[-1] dup_region_feature_map_i = region_feature_map_i.reshape(h, w, c).permute(2, 0, 1) dup_region_feature_map_i = dup_region_feature_map_i.unsqueeze(0).repeat(cur_non_zero_pos.shape[0], 1, 1, 1) # [num_mask, C, H, W] x [num_mask, num_sample_point, 2] -> [num_mask, C, num_sample_point] -> [num_mask, num_sample_point, C] # F.grid_sample doesn't support BF16. Need to tranform into float32 then transform back. dup_region_feature_map_i_ori_type = dup_region_feature_map_i.to(original_dtype) region_feature_i = point_sample(dup_region_feature_map_i_ori_type, cur_non_zero_pos.flip(dims=(2,)).type(original_dtype), return_dtype, align_corners=True, ) # region_feature_i = region_feature_i.to(dup_region_feature_map_i.dtype) region_feature_i = region_feature_i.transpose(-2, -1) cur_img_ids = [img_idx] * len(cur_non_zero_pos) # save to global list all_points.append(cur_non_zero_pos) all_points_fea.append(region_feature_i) all_points_img_ids.extend(cur_img_ids) # pdb.set_trace() # No region found, return list of None. if len(all_points) == 0: return [None] * len(region_masks) all_points = torch.cat(all_points, dim=0).to(return_dtype) # [B*num_mask, num_sample_point, 2] all_points_fea = torch.cat(all_points_fea, dim=0) # [B*num_mask, num_sample_point, C] all_points_img_ids = torch.tensor(all_points_img_ids, device=all_points_fea.device) # pdb.set_trace() assert all_points_fea.shape[:-1] == all_points_fea.shape[:-1] # Processing. for stage_i in range(len(self.num_sub_point)): cur_num_sub_point = self.num_sub_point[stage_i] cur_num_neighbor = self.num_neighbor[stage_i] all_points = all_points.contiguous() # xy [btach, points, xy] fps_idx = farthest_point_sample(all_points, cur_num_sub_point).long() new_points = index_points(all_points, fps_idx) # [B, npoint, 2] new_points_fea = index_points(all_points_fea, fps_idx) # [B, npoint, d] idx = knn_point(cur_num_neighbor, all_points, new_points) grouped_points = index_points(all_points, idx) # [B, npoint, k, 2] grouped_points_fea = index_points(all_points_fea, idx) # [B, npoint, k, d] # pdb.set_trace() local_points_fea = torch.cat([grouped_points_fea, grouped_points], dim=-1) # [B, npoint, k, d+2] anchor_points_fea = torch.cat([new_points_fea, new_points], dim=-1).unsqueeze(-2) diff_points_fea = local_points_fea - anchor_points_fea diff_points_fea = self.diff_projector_list[stage_i](diff_points_fea) gather_points_fea = torch.cat([diff_points_fea, anchor_points_fea.repeat(1, 1, cur_num_neighbor, 1)], dim=-1) # [B, npoint, k, 2(d+2)] # pdb.set_trace() b, n, s, d = gather_points_fea.size() gather_points_fea = gather_points_fea.permute(0, 1, 3, 2) # [B, npoint, 2(d+2), k] gather_points_fea = gather_points_fea.reshape(-1, d, s) # [B*npoint, 2(d+2), k] gather_points_fea = self.agg_projector_list[stage_i](gather_points_fea) # [B*npoint, d, k] # pdb.set_trace() batch_size, new_dim, _ = gather_points_fea.size() gather_points_fea = self.pooler_list[stage_i](gather_points_fea).view(batch_size, new_dim) # [B*npoint, d] # gather_points_fea = F.adaptive_max_pool1d(gather_points_fea, 1).view(batch_size, -1) # [B*npoint, d] # pdb.set_trace() gather_points_fea = gather_points_fea.reshape(b, n, -1) # [B, npoint, d] # pdb.set_trace() all_points = new_points all_points_fea = gather_points_fea # pdb.set_trace() x = all_points_fea.flatten(1, -1) # [B, npoint x d] x = self.flatten_projector(x) all_region_fea = self.dim_projector(x) # [B, d] output_region_fea = [] for img_idx in range(len(region_masks)): cur_mask = all_points_img_ids == img_idx # pdb.set_trace() if not cur_mask.any(): output_region_fea.append(None) else: output_region_fea.append(all_region_fea[cur_mask]) # pdb.set_trace() return output_region_fea class region_pooling(nn.Module): def __init__(self, num_sample_point): super().__init__() self.num_sample_point = num_sample_point self.pooler = nn.AdaptiveAvgPool1d(output_size=1) def extract_region_feature(self, region_feature_map, region_masks, original_dtype, return_dtype): assert len(region_feature_map) == len(region_masks) print("len(region_feature_map): ", len(region_feature_map)) # debug print("len(region_masks): ", len(region_masks)) all_points = [] all_points_fea = [] all_points_img_ids = [] for img_id, (region_feature_map_i, region_masks_list_i) in enumerate(zip(region_feature_map, region_masks)): # [H*W, C] print("region_feature_map_i shape: ", region_feature_map_i.shape) # debug print("len(region_masks_list_i): ", len(region_masks_list_i)) # debug print("region_masks_list_i shape: ", region_masks_list_i.shape) # debug print("region_masks_list_i[0] shape: ", region_masks_list_i[0].shape) # debug if len(region_masks_list_i) != 0: ori_image_wh = torch.tensor([region_masks_list_i[0].shape[0], region_masks_list_i[0].shape[1]], device=region_masks_list_i[0].device)[None,] print("ori_image_wh: ", ori_image_wh) # debug # [num_sample_point, 2] for m in region_masks_list_i: if m.nonzero().shape[0] <=0: print('error') cur_non_zero_pos = [rand_sample_repeat((m.nonzero() / ori_image_wh), self.num_sample_point) for m in region_masks_list_i] # [num_mask, num_sample_point, 2] cur_non_zero_pos = torch.stack(cur_non_zero_pos) print("cur_non_zero_pos shape: ", cur_non_zero_pos.shape) # debug h = w = int(math.sqrt(region_feature_map_i.shape[0])) c = region_feature_map_i.shape[-1] dup_region_feature_map_i = region_feature_map_i.reshape(h, w, c).permute(2, 0, 1) dup_region_feature_map_i = dup_region_feature_map_i.unsqueeze(0).repeat(cur_non_zero_pos.shape[0], 1, 1, 1) dup_region_feature_map_i_ori_type = dup_region_feature_map_i.to(original_dtype) region_feature_i = point_sample(dup_region_feature_map_i_ori_type, cur_non_zero_pos.flip(dims=(2,)).type(original_dtype), return_dtype, align_corners=True, ) # [num_mask, num_sample_point, C] region_feature_i = region_feature_i.transpose(-2, -1) cur_img_id = [img_id] * len(cur_non_zero_pos) all_points.append(cur_non_zero_pos) all_points_fea.append(region_feature_i) all_points_img_ids.extend(cur_img_id) print("len(all_points): ", len(all_points)) # debug print("len(all_points_fea): ", len(all_points_fea)) # debug print("len(all_points_img_ids): ", len(all_points_img_ids)) # debug return all_points, all_points_fea, all_points_img_ids def forward(self, feature_map, region_masks, original_dtype, return_dtype): assert len(feature_map) == len(region_masks) batch_size = len(feature_map) all_points, all_points_fea, all_points_img_ids = self.extract_region_feature(feature_map, region_masks, original_dtype, return_dtype) if len(all_points) == 0: return [None] * len(region_masks) all_points = torch.cat(all_points, dim=0).to(return_dtype) all_points_fea = torch.cat(all_points_fea, dim=0).to(return_dtype) all_points_img_ids = torch.tensor(all_points_img_ids, device=all_points_fea.device) region_feat = self.pooler(all_points_fea.transpose(-2, -1)).transpose(-2, -1) region_feature_list = [] for bs in range(batch_size): index = all_points_img_ids == bs region_feature_list.append(region_feat[index]) return region_feature_list