Commit
·
5fcbf51
1
Parent(s):
9a5c7fa
upload
Browse files- cityscapes/deeplabv3plus_r101_multistep/20230304_140046.log +0 -0
- cityscapes/deeplabv3plus_r101_multistep/20230304_140046.log.json +0 -0
- cityscapes/deeplabv3plus_r101_multistep/best_mIoU_iter_144000.pth +3 -0
- cityscapes/deeplabv3plus_r101_multistep/deeplabv3plus_r101-d8_aspp_head_unet_fc_multi_step_ade_pretrained_freeze_embed_160k_cityscapes20_finetune.py +191 -0
- cityscapes/deeplabv3plus_r101_multistep/iter_160000.pth +3 -0
- cityscapes/deeplabv3plus_r101_multistep/latest.pth +1 -0
- cityscapes/deeplabv3plus_r101_singlestep/20230303_203832.log +1095 -0
- cityscapes/deeplabv3plus_r101_singlestep/20230303_203832.log.json +2 -0
- cityscapes/deeplabv3plus_r101_singlestep/20230303_203945.log +0 -0
- cityscapes/deeplabv3plus_r101_singlestep/20230303_203945.log.json +0 -0
- cityscapes/deeplabv3plus_r101_singlestep/best_mIoU_iter_64000.pth +3 -0
- cityscapes/deeplabv3plus_r101_singlestep/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_cityscapes_pretrained_freeze_embed_80k_cityscapes20.py +180 -0
- cityscapes/deeplabv3plus_r101_singlestep/iter_80000.pth +3 -0
- cityscapes/deeplabv3plus_r101_singlestep/latest.pth +1 -0
- cityscapes/deeplabv3plus_r50_multistep/20230303_205044.log +0 -0
- cityscapes/deeplabv3plus_r50_multistep/20230303_205044.log.json +0 -0
- cityscapes/deeplabv3plus_r50_multistep/best_mIoU_iter_96000.pth +3 -0
- cityscapes/deeplabv3plus_r50_multistep/deeplabv3plus_r50-d8_aspp_head_unet_fc_multi_step_ade_pretrained_freeze_embed_160k_cityscapes20_finetune.py +191 -0
- cityscapes/deeplabv3plus_r50_multistep/iter_160000.pth +3 -0
- cityscapes/deeplabv3plus_r50_multistep/latest.pth +1 -0
- cityscapes/deeplabv3plus_r50_singlestep/20230303_152127.log +0 -0
- cityscapes/deeplabv3plus_r50_singlestep/20230303_152127.log.json +0 -0
- cityscapes/deeplabv3plus_r50_singlestep/best_mIoU_iter_72000.pth +3 -0
- cityscapes/deeplabv3plus_r50_singlestep/deeplabv3plus_r50-d8_aspp_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_cityscapes20.py +180 -0
- cityscapes/deeplabv3plus_r50_singlestep/iter_80000.pth +3 -0
- cityscapes/deeplabv3plus_r50_singlestep/latest.pth +1 -0
- cityscapes/segformer_b0_multistep/best_mIoU_iter_144000.pth +3 -0
- cityscapes/segformer_b0_multistep/segformer_mit_b0_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_cityscapes20_finetune_cfg.py +68 -0
- cityscapes/segformer_b2_multistep/20230302_232152.log +0 -0
- cityscapes/segformer_b2_multistep/20230302_232152.log.json +0 -0
- cityscapes/segformer_b2_multistep/best_mIoU_iter_128000.pth +3 -0
- cityscapes/segformer_b2_multistep/iter_160000.pth +3 -0
- cityscapes/segformer_b2_multistep/latest.pth +1 -0
- cityscapes/segformer_b2_multistep/segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_cityscapes20_finetune_ema.py +195 -0
cityscapes/deeplabv3plus_r101_multistep/20230304_140046.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
cityscapes/deeplabv3plus_r101_multistep/20230304_140046.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
cityscapes/deeplabv3plus_r101_multistep/best_mIoU_iter_144000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:695aa44d075038d156a319c51ab19d43c938622c6f9da85317c00a16a1544a54
|
| 3 |
+
size 690272551
|
cityscapes/deeplabv3plus_r101_multistep/deeplabv3plus_r101-d8_aspp_head_unet_fc_multi_step_ade_pretrained_freeze_embed_160k_cityscapes20_finetune.py
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
| 2 |
+
model = dict(
|
| 3 |
+
type='EncoderDecoderDiffusion',
|
| 4 |
+
pretrained=
|
| 5 |
+
'work_dirs2/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_cityscapes_pretrained_freeze_embed_80k_cityscapes20/latest.pth',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='ResNetV1cCustomInitWeights',
|
| 8 |
+
depth=101,
|
| 9 |
+
num_stages=4,
|
| 10 |
+
out_indices=(0, 1, 2, 3),
|
| 11 |
+
dilations=(1, 1, 2, 4),
|
| 12 |
+
strides=(1, 2, 1, 1),
|
| 13 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
| 14 |
+
norm_eval=False,
|
| 15 |
+
style='pytorch',
|
| 16 |
+
contract_dilation=True),
|
| 17 |
+
decode_head=dict(
|
| 18 |
+
type='DepthwiseSeparableASPPHeadUnetFCHeadMultiStep',
|
| 19 |
+
pretrained=
|
| 20 |
+
'work_dirs2/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_cityscapes_pretrained_freeze_embed_80k_cityscapes20/latest.pth',
|
| 21 |
+
dim=128,
|
| 22 |
+
out_dim=256,
|
| 23 |
+
unet_channels=528,
|
| 24 |
+
dim_mults=[1, 1, 1],
|
| 25 |
+
cat_embedding_dim=16,
|
| 26 |
+
ignore_index=0,
|
| 27 |
+
diffusion_timesteps=100,
|
| 28 |
+
collect_timesteps=[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 99],
|
| 29 |
+
in_channels=2048,
|
| 30 |
+
in_index=3,
|
| 31 |
+
channels=512,
|
| 32 |
+
dilations=(1, 12, 24, 36),
|
| 33 |
+
c1_in_channels=256,
|
| 34 |
+
c1_channels=48,
|
| 35 |
+
dropout_ratio=0.1,
|
| 36 |
+
num_classes=20,
|
| 37 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
| 38 |
+
align_corners=False,
|
| 39 |
+
loss_decode=dict(
|
| 40 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
| 41 |
+
auxiliary_head=None,
|
| 42 |
+
train_cfg=dict(),
|
| 43 |
+
test_cfg=dict(mode='whole'),
|
| 44 |
+
freeze_parameters=['backbone', 'decode_head'])
|
| 45 |
+
dataset_type = 'Cityscapes20Dataset'
|
| 46 |
+
data_root = 'data/cityscapes/'
|
| 47 |
+
img_norm_cfg = dict(
|
| 48 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
| 49 |
+
crop_size = (512, 1024)
|
| 50 |
+
train_pipeline = [
|
| 51 |
+
dict(type='LoadImageFromFile'),
|
| 52 |
+
dict(type='LoadAnnotationsCityscapes20'),
|
| 53 |
+
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
| 54 |
+
dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),
|
| 55 |
+
dict(type='RandomFlip', prob=0.5),
|
| 56 |
+
dict(type='PhotoMetricDistortion'),
|
| 57 |
+
dict(
|
| 58 |
+
type='Normalize',
|
| 59 |
+
mean=[123.675, 116.28, 103.53],
|
| 60 |
+
std=[58.395, 57.12, 57.375],
|
| 61 |
+
to_rgb=True),
|
| 62 |
+
dict(type='Pad', size=(512, 1024), pad_val=0, seg_pad_val=0),
|
| 63 |
+
dict(type='DefaultFormatBundle'),
|
| 64 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
| 65 |
+
]
|
| 66 |
+
test_pipeline = [
|
| 67 |
+
dict(type='LoadImageFromFile'),
|
| 68 |
+
dict(
|
| 69 |
+
type='MultiScaleFlipAug',
|
| 70 |
+
img_scale=(2048, 1024),
|
| 71 |
+
flip=False,
|
| 72 |
+
transforms=[
|
| 73 |
+
dict(type='Resize', keep_ratio=True),
|
| 74 |
+
dict(type='RandomFlip'),
|
| 75 |
+
dict(
|
| 76 |
+
type='Normalize',
|
| 77 |
+
mean=[123.675, 116.28, 103.53],
|
| 78 |
+
std=[58.395, 57.12, 57.375],
|
| 79 |
+
to_rgb=True),
|
| 80 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 81 |
+
dict(type='Collect', keys=['img'])
|
| 82 |
+
])
|
| 83 |
+
]
|
| 84 |
+
data = dict(
|
| 85 |
+
samples_per_gpu=2,
|
| 86 |
+
workers_per_gpu=2,
|
| 87 |
+
train=dict(
|
| 88 |
+
type='Cityscapes20Dataset',
|
| 89 |
+
data_root='data/cityscapes/',
|
| 90 |
+
img_dir='leftImg8bit/train',
|
| 91 |
+
ann_dir='gtFine/train',
|
| 92 |
+
pipeline=[
|
| 93 |
+
dict(type='LoadImageFromFile'),
|
| 94 |
+
dict(type='LoadAnnotationsCityscapes20'),
|
| 95 |
+
dict(
|
| 96 |
+
type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
| 97 |
+
dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),
|
| 98 |
+
dict(type='RandomFlip', prob=0.5),
|
| 99 |
+
dict(type='PhotoMetricDistortion'),
|
| 100 |
+
dict(
|
| 101 |
+
type='Normalize',
|
| 102 |
+
mean=[123.675, 116.28, 103.53],
|
| 103 |
+
std=[58.395, 57.12, 57.375],
|
| 104 |
+
to_rgb=True),
|
| 105 |
+
dict(type='Pad', size=(512, 1024), pad_val=0, seg_pad_val=0),
|
| 106 |
+
dict(type='DefaultFormatBundle'),
|
| 107 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
| 108 |
+
]),
|
| 109 |
+
val=dict(
|
| 110 |
+
type='Cityscapes20Dataset',
|
| 111 |
+
data_root='data/cityscapes/',
|
| 112 |
+
img_dir='leftImg8bit/val',
|
| 113 |
+
ann_dir='gtFine/val',
|
| 114 |
+
pipeline=[
|
| 115 |
+
dict(type='LoadImageFromFile'),
|
| 116 |
+
dict(
|
| 117 |
+
type='MultiScaleFlipAug',
|
| 118 |
+
img_scale=(2048, 1024),
|
| 119 |
+
flip=False,
|
| 120 |
+
transforms=[
|
| 121 |
+
dict(type='Resize', keep_ratio=True),
|
| 122 |
+
dict(type='RandomFlip'),
|
| 123 |
+
dict(
|
| 124 |
+
type='Normalize',
|
| 125 |
+
mean=[123.675, 116.28, 103.53],
|
| 126 |
+
std=[58.395, 57.12, 57.375],
|
| 127 |
+
to_rgb=True),
|
| 128 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 129 |
+
dict(type='Collect', keys=['img'])
|
| 130 |
+
])
|
| 131 |
+
]),
|
| 132 |
+
test=dict(
|
| 133 |
+
type='Cityscapes20Dataset',
|
| 134 |
+
data_root='data/cityscapes/',
|
| 135 |
+
img_dir='leftImg8bit/val',
|
| 136 |
+
ann_dir='gtFine/val',
|
| 137 |
+
pipeline=[
|
| 138 |
+
dict(type='LoadImageFromFile'),
|
| 139 |
+
dict(
|
| 140 |
+
type='MultiScaleFlipAug',
|
| 141 |
+
img_scale=(2048, 1024),
|
| 142 |
+
flip=False,
|
| 143 |
+
transforms=[
|
| 144 |
+
dict(type='Resize', keep_ratio=True),
|
| 145 |
+
dict(type='RandomFlip'),
|
| 146 |
+
dict(
|
| 147 |
+
type='Normalize',
|
| 148 |
+
mean=[123.675, 116.28, 103.53],
|
| 149 |
+
std=[58.395, 57.12, 57.375],
|
| 150 |
+
to_rgb=True),
|
| 151 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 152 |
+
dict(type='Collect', keys=['img'])
|
| 153 |
+
])
|
| 154 |
+
]))
|
| 155 |
+
log_config = dict(
|
| 156 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
| 157 |
+
dist_params = dict(backend='nccl')
|
| 158 |
+
log_level = 'INFO'
|
| 159 |
+
load_from = None
|
| 160 |
+
resume_from = None
|
| 161 |
+
workflow = [('train', 1)]
|
| 162 |
+
cudnn_benchmark = True
|
| 163 |
+
optimizer = dict(
|
| 164 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
| 165 |
+
optimizer_config = dict()
|
| 166 |
+
lr_config = dict(
|
| 167 |
+
policy='step',
|
| 168 |
+
warmup='linear',
|
| 169 |
+
warmup_iters=1000,
|
| 170 |
+
warmup_ratio=1e-06,
|
| 171 |
+
step=20000,
|
| 172 |
+
gamma=0.5,
|
| 173 |
+
min_lr=1e-06,
|
| 174 |
+
by_epoch=False)
|
| 175 |
+
runner = dict(type='IterBasedRunner', max_iters=160000)
|
| 176 |
+
checkpoint_config = dict(by_epoch=False, interval=16000, max_keep_ckpts=1)
|
| 177 |
+
evaluation = dict(
|
| 178 |
+
interval=16000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
| 179 |
+
checkpoint = 'work_dirs2/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_cityscapes_pretrained_freeze_embed_80k_cityscapes20/latest.pth'
|
| 180 |
+
custom_hooks = [
|
| 181 |
+
dict(
|
| 182 |
+
type='ConstantMomentumEMAHook',
|
| 183 |
+
momentum=0.01,
|
| 184 |
+
interval=25,
|
| 185 |
+
eval_interval=16000,
|
| 186 |
+
auto_resume=True,
|
| 187 |
+
priority=49)
|
| 188 |
+
]
|
| 189 |
+
work_dir = './work_dirs2/deeplabv3plus_r101-d8_aspp_head_unet_fc_multi_step_ade_pretrained_freeze_embed_160k_cityscapes20_finetune'
|
| 190 |
+
gpu_ids = range(0, 8)
|
| 191 |
+
auto_resume = True
|
cityscapes/deeplabv3plus_r101_multistep/iter_160000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ac1700a8e4904d3d95f57a108dddee1697a45ace21e88c4e6b4c30eba084f7c8
|
| 3 |
+
size 690272551
|
cityscapes/deeplabv3plus_r101_multistep/latest.pth
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
iter_160000.pth
|
cityscapes/deeplabv3plus_r101_singlestep/20230303_203832.log
ADDED
|
@@ -0,0 +1,1095 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
2023-03-03 20:38:32,836 - mmseg - INFO - Multi-processing start method is `None`
|
| 2 |
+
2023-03-03 20:38:32,858 - mmseg - INFO - OpenCV num_threads is `128
|
| 3 |
+
2023-03-03 20:38:32,858 - mmseg - INFO - OMP num threads is 1
|
| 4 |
+
2023-03-03 20:38:32,925 - mmseg - INFO - Environment info:
|
| 5 |
+
------------------------------------------------------------
|
| 6 |
+
sys.platform: linux
|
| 7 |
+
Python: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0]
|
| 8 |
+
CUDA available: True
|
| 9 |
+
GPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB
|
| 10 |
+
CUDA_HOME: /mnt/petrelfs/laizeqiang/miniconda3/envs/torch
|
| 11 |
+
NVCC: Cuda compilation tools, release 11.6, V11.6.124
|
| 12 |
+
GCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)
|
| 13 |
+
PyTorch: 1.13.1
|
| 14 |
+
PyTorch compiling details: PyTorch built with:
|
| 15 |
+
- GCC 9.3
|
| 16 |
+
- C++ Version: 201402
|
| 17 |
+
- Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
|
| 18 |
+
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
|
| 19 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
| 20 |
+
- LAPACK is enabled (usually provided by MKL)
|
| 21 |
+
- NNPACK is enabled
|
| 22 |
+
- CPU capability usage: AVX2
|
| 23 |
+
- CUDA Runtime 11.6
|
| 24 |
+
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
|
| 25 |
+
- CuDNN 8.3.2 (built against CUDA 11.5)
|
| 26 |
+
- Magma 2.6.1
|
| 27 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
| 28 |
+
|
| 29 |
+
TorchVision: 0.14.1
|
| 30 |
+
OpenCV: 4.7.0
|
| 31 |
+
MMCV: 1.7.1
|
| 32 |
+
MMCV Compiler: GCC 9.3
|
| 33 |
+
MMCV CUDA Compiler: 11.6
|
| 34 |
+
MMSegmentation: 0.30.0+c844fc6
|
| 35 |
+
------------------------------------------------------------
|
| 36 |
+
|
| 37 |
+
2023-03-03 20:38:32,925 - mmseg - INFO - Distributed training: True
|
| 38 |
+
2023-03-03 20:38:33,574 - mmseg - INFO - Config:
|
| 39 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
| 40 |
+
model = dict(
|
| 41 |
+
type='EncoderDecoderFreeze',
|
| 42 |
+
pretrained=
|
| 43 |
+
'pretrained/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth',
|
| 44 |
+
backbone=dict(
|
| 45 |
+
type='ResNetV1cCustomInitWeights',
|
| 46 |
+
depth=101,
|
| 47 |
+
num_stages=4,
|
| 48 |
+
out_indices=(0, 1, 2, 3),
|
| 49 |
+
dilations=(1, 1, 2, 4),
|
| 50 |
+
strides=(1, 2, 1, 1),
|
| 51 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
| 52 |
+
norm_eval=False,
|
| 53 |
+
style='pytorch',
|
| 54 |
+
contract_dilation=True),
|
| 55 |
+
decode_head=dict(
|
| 56 |
+
type='DepthwiseSeparableASPPHeadUnetFCHeadSingleStep',
|
| 57 |
+
pretrained=
|
| 58 |
+
'pretrained/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth',
|
| 59 |
+
dim=256,
|
| 60 |
+
out_dim=256,
|
| 61 |
+
unet_channels=528,
|
| 62 |
+
dim_mults=[1, 1, 1],
|
| 63 |
+
cat_embedding_dim=16,
|
| 64 |
+
ignore_index=0,
|
| 65 |
+
in_channels=2048,
|
| 66 |
+
in_index=3,
|
| 67 |
+
channels=512,
|
| 68 |
+
dilations=(1, 12, 24, 36),
|
| 69 |
+
c1_in_channels=256,
|
| 70 |
+
c1_channels=48,
|
| 71 |
+
dropout_ratio=0.1,
|
| 72 |
+
num_classes=20,
|
| 73 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
| 74 |
+
align_corners=False,
|
| 75 |
+
loss_decode=dict(
|
| 76 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
| 77 |
+
auxiliary_head=None,
|
| 78 |
+
train_cfg=dict(),
|
| 79 |
+
test_cfg=dict(mode='whole'),
|
| 80 |
+
freeze_parameters=['backbone', 'decode_head'])
|
| 81 |
+
dataset_type = 'Cityscapes20Dataset'
|
| 82 |
+
data_root = 'data/cityscapes/'
|
| 83 |
+
img_norm_cfg = dict(
|
| 84 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
| 85 |
+
crop_size = (512, 1024)
|
| 86 |
+
train_pipeline = [
|
| 87 |
+
dict(type='LoadImageFromFile'),
|
| 88 |
+
dict(type='LoadAnnotationsCityscapes20'),
|
| 89 |
+
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
| 90 |
+
dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),
|
| 91 |
+
dict(type='RandomFlip', prob=0.5),
|
| 92 |
+
dict(type='PhotoMetricDistortion'),
|
| 93 |
+
dict(
|
| 94 |
+
type='Normalize',
|
| 95 |
+
mean=[123.675, 116.28, 103.53],
|
| 96 |
+
std=[58.395, 57.12, 57.375],
|
| 97 |
+
to_rgb=True),
|
| 98 |
+
dict(type='Pad', size=(512, 1024), pad_val=0, seg_pad_val=0),
|
| 99 |
+
dict(type='DefaultFormatBundle'),
|
| 100 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
| 101 |
+
]
|
| 102 |
+
test_pipeline = [
|
| 103 |
+
dict(type='LoadImageFromFile'),
|
| 104 |
+
dict(
|
| 105 |
+
type='MultiScaleFlipAug',
|
| 106 |
+
img_scale=(2048, 1024),
|
| 107 |
+
flip=False,
|
| 108 |
+
transforms=[
|
| 109 |
+
dict(type='Resize', keep_ratio=True),
|
| 110 |
+
dict(type='RandomFlip'),
|
| 111 |
+
dict(
|
| 112 |
+
type='Normalize',
|
| 113 |
+
mean=[123.675, 116.28, 103.53],
|
| 114 |
+
std=[58.395, 57.12, 57.375],
|
| 115 |
+
to_rgb=True),
|
| 116 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 117 |
+
dict(type='Collect', keys=['img'])
|
| 118 |
+
])
|
| 119 |
+
]
|
| 120 |
+
data = dict(
|
| 121 |
+
samples_per_gpu=2,
|
| 122 |
+
workers_per_gpu=2,
|
| 123 |
+
train=dict(
|
| 124 |
+
type='Cityscapes20Dataset',
|
| 125 |
+
data_root='data/cityscapes/',
|
| 126 |
+
img_dir='leftImg8bit/train',
|
| 127 |
+
ann_dir='gtFine/train',
|
| 128 |
+
pipeline=[
|
| 129 |
+
dict(type='LoadImageFromFile'),
|
| 130 |
+
dict(type='LoadAnnotationsCityscapes20'),
|
| 131 |
+
dict(
|
| 132 |
+
type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
| 133 |
+
dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),
|
| 134 |
+
dict(type='RandomFlip', prob=0.5),
|
| 135 |
+
dict(type='PhotoMetricDistortion'),
|
| 136 |
+
dict(
|
| 137 |
+
type='Normalize',
|
| 138 |
+
mean=[123.675, 116.28, 103.53],
|
| 139 |
+
std=[58.395, 57.12, 57.375],
|
| 140 |
+
to_rgb=True),
|
| 141 |
+
dict(type='Pad', size=(512, 1024), pad_val=0, seg_pad_val=0),
|
| 142 |
+
dict(type='DefaultFormatBundle'),
|
| 143 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
| 144 |
+
]),
|
| 145 |
+
val=dict(
|
| 146 |
+
type='Cityscapes20Dataset',
|
| 147 |
+
data_root='data/cityscapes/',
|
| 148 |
+
img_dir='leftImg8bit/val',
|
| 149 |
+
ann_dir='gtFine/val',
|
| 150 |
+
pipeline=[
|
| 151 |
+
dict(type='LoadImageFromFile'),
|
| 152 |
+
dict(
|
| 153 |
+
type='MultiScaleFlipAug',
|
| 154 |
+
img_scale=(2048, 1024),
|
| 155 |
+
flip=False,
|
| 156 |
+
transforms=[
|
| 157 |
+
dict(type='Resize', keep_ratio=True),
|
| 158 |
+
dict(type='RandomFlip'),
|
| 159 |
+
dict(
|
| 160 |
+
type='Normalize',
|
| 161 |
+
mean=[123.675, 116.28, 103.53],
|
| 162 |
+
std=[58.395, 57.12, 57.375],
|
| 163 |
+
to_rgb=True),
|
| 164 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 165 |
+
dict(type='Collect', keys=['img'])
|
| 166 |
+
])
|
| 167 |
+
]),
|
| 168 |
+
test=dict(
|
| 169 |
+
type='Cityscapes20Dataset',
|
| 170 |
+
data_root='data/cityscapes/',
|
| 171 |
+
img_dir='leftImg8bit/val',
|
| 172 |
+
ann_dir='gtFine/val',
|
| 173 |
+
pipeline=[
|
| 174 |
+
dict(type='LoadImageFromFile'),
|
| 175 |
+
dict(
|
| 176 |
+
type='MultiScaleFlipAug',
|
| 177 |
+
img_scale=(2048, 1024),
|
| 178 |
+
flip=False,
|
| 179 |
+
transforms=[
|
| 180 |
+
dict(type='Resize', keep_ratio=True),
|
| 181 |
+
dict(type='RandomFlip'),
|
| 182 |
+
dict(
|
| 183 |
+
type='Normalize',
|
| 184 |
+
mean=[123.675, 116.28, 103.53],
|
| 185 |
+
std=[58.395, 57.12, 57.375],
|
| 186 |
+
to_rgb=True),
|
| 187 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 188 |
+
dict(type='Collect', keys=['img'])
|
| 189 |
+
])
|
| 190 |
+
]))
|
| 191 |
+
log_config = dict(
|
| 192 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
| 193 |
+
dist_params = dict(backend='nccl')
|
| 194 |
+
log_level = 'INFO'
|
| 195 |
+
load_from = None
|
| 196 |
+
resume_from = None
|
| 197 |
+
workflow = [('train', 1)]
|
| 198 |
+
cudnn_benchmark = True
|
| 199 |
+
optimizer = dict(
|
| 200 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
| 201 |
+
optimizer_config = dict()
|
| 202 |
+
lr_config = dict(
|
| 203 |
+
policy='step',
|
| 204 |
+
warmup='linear',
|
| 205 |
+
warmup_iters=1000,
|
| 206 |
+
warmup_ratio=1e-06,
|
| 207 |
+
step=10000,
|
| 208 |
+
gamma=0.5,
|
| 209 |
+
min_lr=1e-06,
|
| 210 |
+
by_epoch=False)
|
| 211 |
+
runner = dict(type='IterBasedRunner', max_iters=80000)
|
| 212 |
+
checkpoint_config = dict(by_epoch=False, interval=8000, max_keep_ckpts=1)
|
| 213 |
+
evaluation = dict(
|
| 214 |
+
interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
| 215 |
+
checkpoint = 'pretrained/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth'
|
| 216 |
+
work_dir = './work_dirs2/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_cityscapes_pretrained_freeze_embed_80k_cityscapes20'
|
| 217 |
+
gpu_ids = range(0, 8)
|
| 218 |
+
auto_resume = True
|
| 219 |
+
|
| 220 |
+
2023-03-03 20:38:37,967 - mmseg - INFO - Set random seed to 835892801, deterministic: False
|
| 221 |
+
2023-03-03 20:38:39,336 - mmseg - INFO - Parameters in backbone freezed!
|
| 222 |
+
2023-03-03 20:38:39,337 - mmseg - INFO - Trainable parameters in DepthwiseSeparableASPPHeadUnetFCHeadSingleStep: ['unet.init_conv.weight', 'unet.init_conv.bias', 'unet.time_mlp.1.weight', 'unet.time_mlp.1.bias', 'unet.time_mlp.3.weight', 'unet.time_mlp.3.bias', 'unet.downs.0.0.mlp.1.weight', 'unet.downs.0.0.mlp.1.bias', 'unet.downs.0.0.block1.proj.weight', 'unet.downs.0.0.block1.proj.bias', 'unet.downs.0.0.block1.norm.weight', 'unet.downs.0.0.block1.norm.bias', 'unet.downs.0.0.block2.proj.weight', 'unet.downs.0.0.block2.proj.bias', 'unet.downs.0.0.block2.norm.weight', 'unet.downs.0.0.block2.norm.bias', 'unet.downs.0.1.mlp.1.weight', 'unet.downs.0.1.mlp.1.bias', 'unet.downs.0.1.block1.proj.weight', 'unet.downs.0.1.block1.proj.bias', 'unet.downs.0.1.block1.norm.weight', 'unet.downs.0.1.block1.norm.bias', 'unet.downs.0.1.block2.proj.weight', 'unet.downs.0.1.block2.proj.bias', 'unet.downs.0.1.block2.norm.weight', 'unet.downs.0.1.block2.norm.bias', 'unet.downs.0.2.fn.fn.to_qkv.weight', 'unet.downs.0.2.fn.fn.to_out.0.weight', 'unet.downs.0.2.fn.fn.to_out.0.bias', 'unet.downs.0.2.fn.fn.to_out.1.g', 'unet.downs.0.2.fn.norm.g', 'unet.downs.0.3.weight', 'unet.downs.0.3.bias', 'unet.downs.1.0.mlp.1.weight', 'unet.downs.1.0.mlp.1.bias', 'unet.downs.1.0.block1.proj.weight', 'unet.downs.1.0.block1.proj.bias', 'unet.downs.1.0.block1.norm.weight', 'unet.downs.1.0.block1.norm.bias', 'unet.downs.1.0.block2.proj.weight', 'unet.downs.1.0.block2.proj.bias', 'unet.downs.1.0.block2.norm.weight', 'unet.downs.1.0.block2.norm.bias', 'unet.downs.1.1.mlp.1.weight', 'unet.downs.1.1.mlp.1.bias', 'unet.downs.1.1.block1.proj.weight', 'unet.downs.1.1.block1.proj.bias', 'unet.downs.1.1.block1.norm.weight', 'unet.downs.1.1.block1.norm.bias', 'unet.downs.1.1.block2.proj.weight', 'unet.downs.1.1.block2.proj.bias', 'unet.downs.1.1.block2.norm.weight', 'unet.downs.1.1.block2.norm.bias', 'unet.downs.1.2.fn.fn.to_qkv.weight', 'unet.downs.1.2.fn.fn.to_out.0.weight', 'unet.downs.1.2.fn.fn.to_out.0.bias', 'unet.downs.1.2.fn.fn.to_out.1.g', 'unet.downs.1.2.fn.norm.g', 'unet.downs.1.3.weight', 'unet.downs.1.3.bias', 'unet.downs.2.0.mlp.1.weight', 'unet.downs.2.0.mlp.1.bias', 'unet.downs.2.0.block1.proj.weight', 'unet.downs.2.0.block1.proj.bias', 'unet.downs.2.0.block1.norm.weight', 'unet.downs.2.0.block1.norm.bias', 'unet.downs.2.0.block2.proj.weight', 'unet.downs.2.0.block2.proj.bias', 'unet.downs.2.0.block2.norm.weight', 'unet.downs.2.0.block2.norm.bias', 'unet.downs.2.1.mlp.1.weight', 'unet.downs.2.1.mlp.1.bias', 'unet.downs.2.1.block1.proj.weight', 'unet.downs.2.1.block1.proj.bias', 'unet.downs.2.1.block1.norm.weight', 'unet.downs.2.1.block1.norm.bias', 'unet.downs.2.1.block2.proj.weight', 'unet.downs.2.1.block2.proj.bias', 'unet.downs.2.1.block2.norm.weight', 'unet.downs.2.1.block2.norm.bias', 'unet.downs.2.2.fn.fn.to_qkv.weight', 'unet.downs.2.2.fn.fn.to_out.0.weight', 'unet.downs.2.2.fn.fn.to_out.0.bias', 'unet.downs.2.2.fn.fn.to_out.1.g', 'unet.downs.2.2.fn.norm.g', 'unet.downs.2.3.weight', 'unet.downs.2.3.bias', 'unet.ups.0.0.mlp.1.weight', 'unet.ups.0.0.mlp.1.bias', 'unet.ups.0.0.block1.proj.weight', 'unet.ups.0.0.block1.proj.bias', 'unet.ups.0.0.block1.norm.weight', 'unet.ups.0.0.block1.norm.bias', 'unet.ups.0.0.block2.proj.weight', 'unet.ups.0.0.block2.proj.bias', 'unet.ups.0.0.block2.norm.weight', 'unet.ups.0.0.block2.norm.bias', 'unet.ups.0.0.res_conv.weight', 'unet.ups.0.0.res_conv.bias', 'unet.ups.0.1.mlp.1.weight', 'unet.ups.0.1.mlp.1.bias', 'unet.ups.0.1.block1.proj.weight', 'unet.ups.0.1.block1.proj.bias', 'unet.ups.0.1.block1.norm.weight', 'unet.ups.0.1.block1.norm.bias', 'unet.ups.0.1.block2.proj.weight', 'unet.ups.0.1.block2.proj.bias', 'unet.ups.0.1.block2.norm.weight', 'unet.ups.0.1.block2.norm.bias', 'unet.ups.0.1.res_conv.weight', 'unet.ups.0.1.res_conv.bias', 'unet.ups.0.2.fn.fn.to_qkv.weight', 'unet.ups.0.2.fn.fn.to_out.0.weight', 'unet.ups.0.2.fn.fn.to_out.0.bias', 'unet.ups.0.2.fn.fn.to_out.1.g', 'unet.ups.0.2.fn.norm.g', 'unet.ups.0.3.1.weight', 'unet.ups.0.3.1.bias', 'unet.ups.1.0.mlp.1.weight', 'unet.ups.1.0.mlp.1.bias', 'unet.ups.1.0.block1.proj.weight', 'unet.ups.1.0.block1.proj.bias', 'unet.ups.1.0.block1.norm.weight', 'unet.ups.1.0.block1.norm.bias', 'unet.ups.1.0.block2.proj.weight', 'unet.ups.1.0.block2.proj.bias', 'unet.ups.1.0.block2.norm.weight', 'unet.ups.1.0.block2.norm.bias', 'unet.ups.1.0.res_conv.weight', 'unet.ups.1.0.res_conv.bias', 'unet.ups.1.1.mlp.1.weight', 'unet.ups.1.1.mlp.1.bias', 'unet.ups.1.1.block1.proj.weight', 'unet.ups.1.1.block1.proj.bias', 'unet.ups.1.1.block1.norm.weight', 'unet.ups.1.1.block1.norm.bias', 'unet.ups.1.1.block2.proj.weight', 'unet.ups.1.1.block2.proj.bias', 'unet.ups.1.1.block2.norm.weight', 'unet.ups.1.1.block2.norm.bias', 'unet.ups.1.1.res_conv.weight', 'unet.ups.1.1.res_conv.bias', 'unet.ups.1.2.fn.fn.to_qkv.weight', 'unet.ups.1.2.fn.fn.to_out.0.weight', 'unet.ups.1.2.fn.fn.to_out.0.bias', 'unet.ups.1.2.fn.fn.to_out.1.g', 'unet.ups.1.2.fn.norm.g', 'unet.ups.1.3.1.weight', 'unet.ups.1.3.1.bias', 'unet.ups.2.0.mlp.1.weight', 'unet.ups.2.0.mlp.1.bias', 'unet.ups.2.0.block1.proj.weight', 'unet.ups.2.0.block1.proj.bias', 'unet.ups.2.0.block1.norm.weight', 'unet.ups.2.0.block1.norm.bias', 'unet.ups.2.0.block2.proj.weight', 'unet.ups.2.0.block2.proj.bias', 'unet.ups.2.0.block2.norm.weight', 'unet.ups.2.0.block2.norm.bias', 'unet.ups.2.0.res_conv.weight', 'unet.ups.2.0.res_conv.bias', 'unet.ups.2.1.mlp.1.weight', 'unet.ups.2.1.mlp.1.bias', 'unet.ups.2.1.block1.proj.weight', 'unet.ups.2.1.block1.proj.bias', 'unet.ups.2.1.block1.norm.weight', 'unet.ups.2.1.block1.norm.bias', 'unet.ups.2.1.block2.proj.weight', 'unet.ups.2.1.block2.proj.bias', 'unet.ups.2.1.block2.norm.weight', 'unet.ups.2.1.block2.norm.bias', 'unet.ups.2.1.res_conv.weight', 'unet.ups.2.1.res_conv.bias', 'unet.ups.2.2.fn.fn.to_qkv.weight', 'unet.ups.2.2.fn.fn.to_out.0.weight', 'unet.ups.2.2.fn.fn.to_out.0.bias', 'unet.ups.2.2.fn.fn.to_out.1.g', 'unet.ups.2.2.fn.norm.g', 'unet.ups.2.3.weight', 'unet.ups.2.3.bias', 'unet.mid_block1.mlp.1.weight', 'unet.mid_block1.mlp.1.bias', 'unet.mid_block1.block1.proj.weight', 'unet.mid_block1.block1.proj.bias', 'unet.mid_block1.block1.norm.weight', 'unet.mid_block1.block1.norm.bias', 'unet.mid_block1.block2.proj.weight', 'unet.mid_block1.block2.proj.bias', 'unet.mid_block1.block2.norm.weight', 'unet.mid_block1.block2.norm.bias', 'unet.mid_attn.fn.fn.to_qkv.weight', 'unet.mid_attn.fn.fn.to_out.weight', 'unet.mid_attn.fn.fn.to_out.bias', 'unet.mid_attn.fn.norm.g', 'unet.mid_block2.mlp.1.weight', 'unet.mid_block2.mlp.1.bias', 'unet.mid_block2.block1.proj.weight', 'unet.mid_block2.block1.proj.bias', 'unet.mid_block2.block1.norm.weight', 'unet.mid_block2.block1.norm.bias', 'unet.mid_block2.block2.proj.weight', 'unet.mid_block2.block2.proj.bias', 'unet.mid_block2.block2.norm.weight', 'unet.mid_block2.block2.norm.bias', 'unet.final_res_block.mlp.1.weight', 'unet.final_res_block.mlp.1.bias', 'unet.final_res_block.block1.proj.weight', 'unet.final_res_block.block1.proj.bias', 'unet.final_res_block.block1.norm.weight', 'unet.final_res_block.block1.norm.bias', 'unet.final_res_block.block2.proj.weight', 'unet.final_res_block.block2.proj.bias', 'unet.final_res_block.block2.norm.weight', 'unet.final_res_block.block2.norm.bias', 'unet.final_res_block.res_conv.weight', 'unet.final_res_block.res_conv.bias', 'unet.final_conv.weight', 'unet.final_conv.bias', 'conv_seg_new.weight', 'conv_seg_new.bias']
|
| 223 |
+
2023-03-03 20:38:39,337 - mmseg - INFO - Parameters in decode_head freezed!
|
| 224 |
+
2023-03-03 20:38:39,389 - mmseg - INFO - load checkpoint from local path: pretrained/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth
|
| 225 |
+
2023-03-03 20:38:39,920 - mmseg - WARNING - The model and loaded state dict do not match exactly
|
| 226 |
+
|
| 227 |
+
unexpected key in source state_dict: decode_head.conv_seg.weight, decode_head.conv_seg.bias, decode_head.image_pool.1.conv.weight, decode_head.image_pool.1.bn.weight, decode_head.image_pool.1.bn.bias, decode_head.image_pool.1.bn.running_mean, decode_head.image_pool.1.bn.running_var, decode_head.image_pool.1.bn.num_batches_tracked, decode_head.aspp_modules.0.conv.weight, decode_head.aspp_modules.0.bn.weight, decode_head.aspp_modules.0.bn.bias, decode_head.aspp_modules.0.bn.running_mean, decode_head.aspp_modules.0.bn.running_var, decode_head.aspp_modules.0.bn.num_batches_tracked, decode_head.aspp_modules.1.depthwise_conv.conv.weight, decode_head.aspp_modules.1.depthwise_conv.bn.weight, decode_head.aspp_modules.1.depthwise_conv.bn.bias, decode_head.aspp_modules.1.depthwise_conv.bn.running_mean, decode_head.aspp_modules.1.depthwise_conv.bn.running_var, decode_head.aspp_modules.1.depthwise_conv.bn.num_batches_tracked, decode_head.aspp_modules.1.pointwise_conv.conv.weight, decode_head.aspp_modules.1.pointwise_conv.bn.weight, decode_head.aspp_modules.1.pointwise_conv.bn.bias, decode_head.aspp_modules.1.pointwise_conv.bn.running_mean, decode_head.aspp_modules.1.pointwise_conv.bn.running_var, decode_head.aspp_modules.1.pointwise_conv.bn.num_batches_tracked, decode_head.aspp_modules.2.depthwise_conv.conv.weight, decode_head.aspp_modules.2.depthwise_conv.bn.weight, decode_head.aspp_modules.2.depthwise_conv.bn.bias, decode_head.aspp_modules.2.depthwise_conv.bn.running_mean, decode_head.aspp_modules.2.depthwise_conv.bn.running_var, decode_head.aspp_modules.2.depthwise_conv.bn.num_batches_tracked, decode_head.aspp_modules.2.pointwise_conv.conv.weight, decode_head.aspp_modules.2.pointwise_conv.bn.weight, decode_head.aspp_modules.2.pointwise_conv.bn.bias, decode_head.aspp_modules.2.pointwise_conv.bn.running_mean, decode_head.aspp_modules.2.pointwise_conv.bn.running_var, decode_head.aspp_modules.2.pointwise_conv.bn.num_batches_tracked, decode_head.aspp_modules.3.depthwise_conv.conv.weight, decode_head.aspp_modules.3.depthwise_conv.bn.weight, decode_head.aspp_modules.3.depthwise_conv.bn.bias, decode_head.aspp_modules.3.depthwise_conv.bn.running_mean, decode_head.aspp_modules.3.depthwise_conv.bn.running_var, decode_head.aspp_modules.3.depthwise_conv.bn.num_batches_tracked, decode_head.aspp_modules.3.pointwise_conv.conv.weight, decode_head.aspp_modules.3.pointwise_conv.bn.weight, decode_head.aspp_modules.3.pointwise_conv.bn.bias, decode_head.aspp_modules.3.pointwise_conv.bn.running_mean, decode_head.aspp_modules.3.pointwise_conv.bn.running_var, decode_head.aspp_modules.3.pointwise_conv.bn.num_batches_tracked, decode_head.bottleneck.conv.weight, decode_head.bottleneck.bn.weight, decode_head.bottleneck.bn.bias, decode_head.bottleneck.bn.running_mean, decode_head.bottleneck.bn.running_var, decode_head.bottleneck.bn.num_batches_tracked, decode_head.c1_bottleneck.conv.weight, decode_head.c1_bottleneck.bn.weight, decode_head.c1_bottleneck.bn.bias, decode_head.c1_bottleneck.bn.running_mean, decode_head.c1_bottleneck.bn.running_var, decode_head.c1_bottleneck.bn.num_batches_tracked, decode_head.sep_bottleneck.0.depthwise_conv.conv.weight, decode_head.sep_bottleneck.0.depthwise_conv.bn.weight, decode_head.sep_bottleneck.0.depthwise_conv.bn.bias, decode_head.sep_bottleneck.0.depthwise_conv.bn.running_mean, decode_head.sep_bottleneck.0.depthwise_conv.bn.running_var, decode_head.sep_bottleneck.0.depthwise_conv.bn.num_batches_tracked, decode_head.sep_bottleneck.0.pointwise_conv.conv.weight, decode_head.sep_bottleneck.0.pointwise_conv.bn.weight, decode_head.sep_bottleneck.0.pointwise_conv.bn.bias, decode_head.sep_bottleneck.0.pointwise_conv.bn.running_mean, decode_head.sep_bottleneck.0.pointwise_conv.bn.running_var, decode_head.sep_bottleneck.0.pointwise_conv.bn.num_batches_tracked, decode_head.sep_bottleneck.1.depthwise_conv.conv.weight, decode_head.sep_bottleneck.1.depthwise_conv.bn.weight, decode_head.sep_bottleneck.1.depthwise_conv.bn.bias, decode_head.sep_bottleneck.1.depthwise_conv.bn.running_mean, decode_head.sep_bottleneck.1.depthwise_conv.bn.running_var, decode_head.sep_bottleneck.1.depthwise_conv.bn.num_batches_tracked, decode_head.sep_bottleneck.1.pointwise_conv.conv.weight, decode_head.sep_bottleneck.1.pointwise_conv.bn.weight, decode_head.sep_bottleneck.1.pointwise_conv.bn.bias, decode_head.sep_bottleneck.1.pointwise_conv.bn.running_mean, decode_head.sep_bottleneck.1.pointwise_conv.bn.running_var, decode_head.sep_bottleneck.1.pointwise_conv.bn.num_batches_tracked, auxiliary_head.conv_seg.weight, auxiliary_head.conv_seg.bias, auxiliary_head.convs.0.conv.weight, auxiliary_head.convs.0.bn.weight, auxiliary_head.convs.0.bn.bias, auxiliary_head.convs.0.bn.running_mean, auxiliary_head.convs.0.bn.running_var, auxiliary_head.convs.0.bn.num_batches_tracked
|
| 228 |
+
|
| 229 |
+
2023-03-03 20:38:39,948 - mmseg - INFO - load checkpoint from local path: pretrained/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth
|
| 230 |
+
2023-03-03 20:38:40,463 - mmseg - WARNING - The model and loaded state dict do not match exactly
|
| 231 |
+
|
| 232 |
+
unexpected key in source state_dict: backbone.stem.0.weight, backbone.stem.1.weight, backbone.stem.1.bias, backbone.stem.1.running_mean, backbone.stem.1.running_var, backbone.stem.1.num_batches_tracked, backbone.stem.3.weight, backbone.stem.4.weight, backbone.stem.4.bias, backbone.stem.4.running_mean, backbone.stem.4.running_var, backbone.stem.4.num_batches_tracked, backbone.stem.6.weight, backbone.stem.7.weight, backbone.stem.7.bias, backbone.stem.7.running_mean, backbone.stem.7.running_var, backbone.stem.7.num_batches_tracked, backbone.layer1.0.conv1.weight, backbone.layer1.0.bn1.weight, backbone.layer1.0.bn1.bias, backbone.layer1.0.bn1.running_mean, backbone.layer1.0.bn1.running_var, backbone.layer1.0.bn1.num_batches_tracked, backbone.layer1.0.conv2.weight, backbone.layer1.0.bn2.weight, backbone.layer1.0.bn2.bias, backbone.layer1.0.bn2.running_mean, backbone.layer1.0.bn2.running_var, backbone.layer1.0.bn2.num_batches_tracked, backbone.layer1.0.conv3.weight, backbone.layer1.0.bn3.weight, backbone.layer1.0.bn3.bias, backbone.layer1.0.bn3.running_mean, backbone.layer1.0.bn3.running_var, backbone.layer1.0.bn3.num_batches_tracked, backbone.layer1.0.downsample.0.weight, backbone.layer1.0.downsample.1.weight, backbone.layer1.0.downsample.1.bias, backbone.layer1.0.downsample.1.running_mean, backbone.layer1.0.downsample.1.running_var, backbone.layer1.0.downsample.1.num_batches_tracked, backbone.layer1.1.conv1.weight, backbone.layer1.1.bn1.weight, backbone.layer1.1.bn1.bias, backbone.layer1.1.bn1.running_mean, backbone.layer1.1.bn1.running_var, backbone.layer1.1.bn1.num_batches_tracked, backbone.layer1.1.conv2.weight, backbone.layer1.1.bn2.weight, backbone.layer1.1.bn2.bias, backbone.layer1.1.bn2.running_mean, backbone.layer1.1.bn2.running_var, backbone.layer1.1.bn2.num_batches_tracked, backbone.layer1.1.conv3.weight, backbone.layer1.1.bn3.weight, backbone.layer1.1.bn3.bias, backbone.layer1.1.bn3.running_mean, backbone.layer1.1.bn3.running_var, backbone.layer1.1.bn3.num_batches_tracked, backbone.layer1.2.conv1.weight, backbone.layer1.2.bn1.weight, backbone.layer1.2.bn1.bias, backbone.layer1.2.bn1.running_mean, backbone.layer1.2.bn1.running_var, backbone.layer1.2.bn1.num_batches_tracked, backbone.layer1.2.conv2.weight, backbone.layer1.2.bn2.weight, backbone.layer1.2.bn2.bias, backbone.layer1.2.bn2.running_mean, backbone.layer1.2.bn2.running_var, backbone.layer1.2.bn2.num_batches_tracked, backbone.layer1.2.conv3.weight, backbone.layer1.2.bn3.weight, backbone.layer1.2.bn3.bias, backbone.layer1.2.bn3.running_mean, backbone.layer1.2.bn3.running_var, backbone.layer1.2.bn3.num_batches_tracked, backbone.layer2.0.conv1.weight, backbone.layer2.0.bn1.weight, backbone.layer2.0.bn1.bias, backbone.layer2.0.bn1.running_mean, backbone.layer2.0.bn1.running_var, backbone.layer2.0.bn1.num_batches_tracked, backbone.layer2.0.conv2.weight, backbone.layer2.0.bn2.weight, backbone.layer2.0.bn2.bias, backbone.layer2.0.bn2.running_mean, backbone.layer2.0.bn2.running_var, backbone.layer2.0.bn2.num_batches_tracked, backbone.layer2.0.conv3.weight, backbone.layer2.0.bn3.weight, backbone.layer2.0.bn3.bias, backbone.layer2.0.bn3.running_mean, backbone.layer2.0.bn3.running_var, backbone.layer2.0.bn3.num_batches_tracked, backbone.layer2.0.downsample.0.weight, backbone.layer2.0.downsample.1.weight, backbone.layer2.0.downsample.1.bias, backbone.layer2.0.downsample.1.running_mean, backbone.layer2.0.downsample.1.running_var, backbone.layer2.0.downsample.1.num_batches_tracked, backbone.layer2.1.conv1.weight, backbone.layer2.1.bn1.weight, backbone.layer2.1.bn1.bias, backbone.layer2.1.bn1.running_mean, backbone.layer2.1.bn1.running_var, backbone.layer2.1.bn1.num_batches_tracked, backbone.layer2.1.conv2.weight, backbone.layer2.1.bn2.weight, backbone.layer2.1.bn2.bias, backbone.layer2.1.bn2.running_mean, backbone.layer2.1.bn2.running_var, backbone.layer2.1.bn2.num_batches_tracked, backbone.layer2.1.conv3.weight, backbone.layer2.1.bn3.weight, backbone.layer2.1.bn3.bias, backbone.layer2.1.bn3.running_mean, backbone.layer2.1.bn3.running_var, backbone.layer2.1.bn3.num_batches_tracked, backbone.layer2.2.conv1.weight, backbone.layer2.2.bn1.weight, backbone.layer2.2.bn1.bias, backbone.layer2.2.bn1.running_mean, backbone.layer2.2.bn1.running_var, backbone.layer2.2.bn1.num_batches_tracked, backbone.layer2.2.conv2.weight, backbone.layer2.2.bn2.weight, backbone.layer2.2.bn2.bias, backbone.layer2.2.bn2.running_mean, backbone.layer2.2.bn2.running_var, backbone.layer2.2.bn2.num_batches_tracked, backbone.layer2.2.conv3.weight, backbone.layer2.2.bn3.weight, backbone.layer2.2.bn3.bias, backbone.layer2.2.bn3.running_mean, backbone.layer2.2.bn3.running_var, backbone.layer2.2.bn3.num_batches_tracked, backbone.layer2.3.conv1.weight, backbone.layer2.3.bn1.weight, backbone.layer2.3.bn1.bias, backbone.layer2.3.bn1.running_mean, backbone.layer2.3.bn1.running_var, backbone.layer2.3.bn1.num_batches_tracked, backbone.layer2.3.conv2.weight, backbone.layer2.3.bn2.weight, backbone.layer2.3.bn2.bias, backbone.layer2.3.bn2.running_mean, backbone.layer2.3.bn2.running_var, backbone.layer2.3.bn2.num_batches_tracked, backbone.layer2.3.conv3.weight, backbone.layer2.3.bn3.weight, backbone.layer2.3.bn3.bias, backbone.layer2.3.bn3.running_mean, backbone.layer2.3.bn3.running_var, backbone.layer2.3.bn3.num_batches_tracked, backbone.layer3.0.conv1.weight, backbone.layer3.0.bn1.weight, backbone.layer3.0.bn1.bias, backbone.layer3.0.bn1.running_mean, backbone.layer3.0.bn1.running_var, backbone.layer3.0.bn1.num_batches_tracked, backbone.layer3.0.conv2.weight, backbone.layer3.0.bn2.weight, backbone.layer3.0.bn2.bias, backbone.layer3.0.bn2.running_mean, backbone.layer3.0.bn2.running_var, backbone.layer3.0.bn2.num_batches_tracked, backbone.layer3.0.conv3.weight, backbone.layer3.0.bn3.weight, backbone.layer3.0.bn3.bias, backbone.layer3.0.bn3.running_mean, backbone.layer3.0.bn3.running_var, backbone.layer3.0.bn3.num_batches_tracked, backbone.layer3.0.downsample.0.weight, backbone.layer3.0.downsample.1.weight, backbone.layer3.0.downsample.1.bias, backbone.layer3.0.downsample.1.running_mean, backbone.layer3.0.downsample.1.running_var, backbone.layer3.0.downsample.1.num_batches_tracked, backbone.layer3.1.conv1.weight, backbone.layer3.1.bn1.weight, backbone.layer3.1.bn1.bias, backbone.layer3.1.bn1.running_mean, backbone.layer3.1.bn1.running_var, backbone.layer3.1.bn1.num_batches_tracked, backbone.layer3.1.conv2.weight, backbone.layer3.1.bn2.weight, backbone.layer3.1.bn2.bias, backbone.layer3.1.bn2.running_mean, backbone.layer3.1.bn2.running_var, backbone.layer3.1.bn2.num_batches_tracked, backbone.layer3.1.conv3.weight, backbone.layer3.1.bn3.weight, backbone.layer3.1.bn3.bias, backbone.layer3.1.bn3.running_mean, backbone.layer3.1.bn3.running_var, backbone.layer3.1.bn3.num_batches_tracked, backbone.layer3.2.conv1.weight, backbone.layer3.2.bn1.weight, backbone.layer3.2.bn1.bias, backbone.layer3.2.bn1.running_mean, backbone.layer3.2.bn1.running_var, backbone.layer3.2.bn1.num_batches_tracked, backbone.layer3.2.conv2.weight, backbone.layer3.2.bn2.weight, backbone.layer3.2.bn2.bias, backbone.layer3.2.bn2.running_mean, backbone.layer3.2.bn2.running_var, backbone.layer3.2.bn2.num_batches_tracked, backbone.layer3.2.conv3.weight, backbone.layer3.2.bn3.weight, backbone.layer3.2.bn3.bias, backbone.layer3.2.bn3.running_mean, backbone.layer3.2.bn3.running_var, backbone.layer3.2.bn3.num_batches_tracked, backbone.layer3.3.conv1.weight, backbone.layer3.3.bn1.weight, backbone.layer3.3.bn1.bias, backbone.layer3.3.bn1.running_mean, backbone.layer3.3.bn1.running_var, backbone.layer3.3.bn1.num_batches_tracked, backbone.layer3.3.conv2.weight, backbone.layer3.3.bn2.weight, backbone.layer3.3.bn2.bias, backbone.layer3.3.bn2.running_mean, backbone.layer3.3.bn2.running_var, backbone.layer3.3.bn2.num_batches_tracked, backbone.layer3.3.conv3.weight, backbone.layer3.3.bn3.weight, backbone.layer3.3.bn3.bias, backbone.layer3.3.bn3.running_mean, backbone.layer3.3.bn3.running_var, backbone.layer3.3.bn3.num_batches_tracked, backbone.layer3.4.conv1.weight, backbone.layer3.4.bn1.weight, backbone.layer3.4.bn1.bias, backbone.layer3.4.bn1.running_mean, backbone.layer3.4.bn1.running_var, backbone.layer3.4.bn1.num_batches_tracked, backbone.layer3.4.conv2.weight, backbone.layer3.4.bn2.weight, backbone.layer3.4.bn2.bias, backbone.layer3.4.bn2.running_mean, backbone.layer3.4.bn2.running_var, backbone.layer3.4.bn2.num_batches_tracked, backbone.layer3.4.conv3.weight, backbone.layer3.4.bn3.weight, backbone.layer3.4.bn3.bias, backbone.layer3.4.bn3.running_mean, backbone.layer3.4.bn3.running_var, backbone.layer3.4.bn3.num_batches_tracked, backbone.layer3.5.conv1.weight, backbone.layer3.5.bn1.weight, backbone.layer3.5.bn1.bias, backbone.layer3.5.bn1.running_mean, backbone.layer3.5.bn1.running_var, backbone.layer3.5.bn1.num_batches_tracked, backbone.layer3.5.conv2.weight, backbone.layer3.5.bn2.weight, backbone.layer3.5.bn2.bias, backbone.layer3.5.bn2.running_mean, backbone.layer3.5.bn2.running_var, backbone.layer3.5.bn2.num_batches_tracked, backbone.layer3.5.conv3.weight, backbone.layer3.5.bn3.weight, backbone.layer3.5.bn3.bias, backbone.layer3.5.bn3.running_mean, backbone.layer3.5.bn3.running_var, backbone.layer3.5.bn3.num_batches_tracked, backbone.layer3.6.conv1.weight, backbone.layer3.6.bn1.weight, backbone.layer3.6.bn1.bias, backbone.layer3.6.bn1.running_mean, backbone.layer3.6.bn1.running_var, backbone.layer3.6.bn1.num_batches_tracked, backbone.layer3.6.conv2.weight, backbone.layer3.6.bn2.weight, backbone.layer3.6.bn2.bias, backbone.layer3.6.bn2.running_mean, backbone.layer3.6.bn2.running_var, backbone.layer3.6.bn2.num_batches_tracked, backbone.layer3.6.conv3.weight, backbone.layer3.6.bn3.weight, backbone.layer3.6.bn3.bias, backbone.layer3.6.bn3.running_mean, backbone.layer3.6.bn3.running_var, backbone.layer3.6.bn3.num_batches_tracked, backbone.layer3.7.conv1.weight, backbone.layer3.7.bn1.weight, backbone.layer3.7.bn1.bias, backbone.layer3.7.bn1.running_mean, backbone.layer3.7.bn1.running_var, backbone.layer3.7.bn1.num_batches_tracked, backbone.layer3.7.conv2.weight, backbone.layer3.7.bn2.weight, backbone.layer3.7.bn2.bias, backbone.layer3.7.bn2.running_mean, backbone.layer3.7.bn2.running_var, backbone.layer3.7.bn2.num_batches_tracked, backbone.layer3.7.conv3.weight, backbone.layer3.7.bn3.weight, backbone.layer3.7.bn3.bias, backbone.layer3.7.bn3.running_mean, backbone.layer3.7.bn3.running_var, backbone.layer3.7.bn3.num_batches_tracked, backbone.layer3.8.conv1.weight, backbone.layer3.8.bn1.weight, backbone.layer3.8.bn1.bias, backbone.layer3.8.bn1.running_mean, backbone.layer3.8.bn1.running_var, backbone.layer3.8.bn1.num_batches_tracked, backbone.layer3.8.conv2.weight, backbone.layer3.8.bn2.weight, backbone.layer3.8.bn2.bias, backbone.layer3.8.bn2.running_mean, backbone.layer3.8.bn2.running_var, backbone.layer3.8.bn2.num_batches_tracked, backbone.layer3.8.conv3.weight, backbone.layer3.8.bn3.weight, backbone.layer3.8.bn3.bias, backbone.layer3.8.bn3.running_mean, backbone.layer3.8.bn3.running_var, backbone.layer3.8.bn3.num_batches_tracked, backbone.layer3.9.conv1.weight, backbone.layer3.9.bn1.weight, backbone.layer3.9.bn1.bias, backbone.layer3.9.bn1.running_mean, backbone.layer3.9.bn1.running_var, backbone.layer3.9.bn1.num_batches_tracked, backbone.layer3.9.conv2.weight, backbone.layer3.9.bn2.weight, backbone.layer3.9.bn2.bias, backbone.layer3.9.bn2.running_mean, backbone.layer3.9.bn2.running_var, backbone.layer3.9.bn2.num_batches_tracked, backbone.layer3.9.conv3.weight, backbone.layer3.9.bn3.weight, backbone.layer3.9.bn3.bias, backbone.layer3.9.bn3.running_mean, backbone.layer3.9.bn3.running_var, backbone.layer3.9.bn3.num_batches_tracked, backbone.layer3.10.conv1.weight, backbone.layer3.10.bn1.weight, backbone.layer3.10.bn1.bias, backbone.layer3.10.bn1.running_mean, backbone.layer3.10.bn1.running_var, backbone.layer3.10.bn1.num_batches_tracked, backbone.layer3.10.conv2.weight, backbone.layer3.10.bn2.weight, backbone.layer3.10.bn2.bias, backbone.layer3.10.bn2.running_mean, backbone.layer3.10.bn2.running_var, backbone.layer3.10.bn2.num_batches_tracked, backbone.layer3.10.conv3.weight, backbone.layer3.10.bn3.weight, backbone.layer3.10.bn3.bias, backbone.layer3.10.bn3.running_mean, backbone.layer3.10.bn3.running_var, backbone.layer3.10.bn3.num_batches_tracked, backbone.layer3.11.conv1.weight, backbone.layer3.11.bn1.weight, backbone.layer3.11.bn1.bias, backbone.layer3.11.bn1.running_mean, backbone.layer3.11.bn1.running_var, backbone.layer3.11.bn1.num_batches_tracked, backbone.layer3.11.conv2.weight, backbone.layer3.11.bn2.weight, backbone.layer3.11.bn2.bias, backbone.layer3.11.bn2.running_mean, backbone.layer3.11.bn2.running_var, backbone.layer3.11.bn2.num_batches_tracked, backbone.layer3.11.conv3.weight, backbone.layer3.11.bn3.weight, backbone.layer3.11.bn3.bias, backbone.layer3.11.bn3.running_mean, backbone.layer3.11.bn3.running_var, backbone.layer3.11.bn3.num_batches_tracked, backbone.layer3.12.conv1.weight, backbone.layer3.12.bn1.weight, backbone.layer3.12.bn1.bias, backbone.layer3.12.bn1.running_mean, backbone.layer3.12.bn1.running_var, backbone.layer3.12.bn1.num_batches_tracked, backbone.layer3.12.conv2.weight, backbone.layer3.12.bn2.weight, backbone.layer3.12.bn2.bias, backbone.layer3.12.bn2.running_mean, backbone.layer3.12.bn2.running_var, backbone.layer3.12.bn2.num_batches_tracked, backbone.layer3.12.conv3.weight, backbone.layer3.12.bn3.weight, backbone.layer3.12.bn3.bias, backbone.layer3.12.bn3.running_mean, backbone.layer3.12.bn3.running_var, backbone.layer3.12.bn3.num_batches_tracked, backbone.layer3.13.conv1.weight, backbone.layer3.13.bn1.weight, backbone.layer3.13.bn1.bias, backbone.layer3.13.bn1.running_mean, backbone.layer3.13.bn1.running_var, backbone.layer3.13.bn1.num_batches_tracked, backbone.layer3.13.conv2.weight, backbone.layer3.13.bn2.weight, backbone.layer3.13.bn2.bias, backbone.layer3.13.bn2.running_mean, backbone.layer3.13.bn2.running_var, backbone.layer3.13.bn2.num_batches_tracked, backbone.layer3.13.conv3.weight, backbone.layer3.13.bn3.weight, backbone.layer3.13.bn3.bias, backbone.layer3.13.bn3.running_mean, backbone.layer3.13.bn3.running_var, backbone.layer3.13.bn3.num_batches_tracked, backbone.layer3.14.conv1.weight, backbone.layer3.14.bn1.weight, backbone.layer3.14.bn1.bias, backbone.layer3.14.bn1.running_mean, backbone.layer3.14.bn1.running_var, backbone.layer3.14.bn1.num_batches_tracked, backbone.layer3.14.conv2.weight, backbone.layer3.14.bn2.weight, backbone.layer3.14.bn2.bias, backbone.layer3.14.bn2.running_mean, backbone.layer3.14.bn2.running_var, backbone.layer3.14.bn2.num_batches_tracked, backbone.layer3.14.conv3.weight, backbone.layer3.14.bn3.weight, backbone.layer3.14.bn3.bias, backbone.layer3.14.bn3.running_mean, backbone.layer3.14.bn3.running_var, backbone.layer3.14.bn3.num_batches_tracked, backbone.layer3.15.conv1.weight, backbone.layer3.15.bn1.weight, backbone.layer3.15.bn1.bias, backbone.layer3.15.bn1.running_mean, backbone.layer3.15.bn1.running_var, backbone.layer3.15.bn1.num_batches_tracked, backbone.layer3.15.conv2.weight, backbone.layer3.15.bn2.weight, backbone.layer3.15.bn2.bias, backbone.layer3.15.bn2.running_mean, backbone.layer3.15.bn2.running_var, backbone.layer3.15.bn2.num_batches_tracked, backbone.layer3.15.conv3.weight, backbone.layer3.15.bn3.weight, backbone.layer3.15.bn3.bias, backbone.layer3.15.bn3.running_mean, backbone.layer3.15.bn3.running_var, backbone.layer3.15.bn3.num_batches_tracked, backbone.layer3.16.conv1.weight, backbone.layer3.16.bn1.weight, backbone.layer3.16.bn1.bias, backbone.layer3.16.bn1.running_mean, backbone.layer3.16.bn1.running_var, backbone.layer3.16.bn1.num_batches_tracked, backbone.layer3.16.conv2.weight, backbone.layer3.16.bn2.weight, backbone.layer3.16.bn2.bias, backbone.layer3.16.bn2.running_mean, backbone.layer3.16.bn2.running_var, backbone.layer3.16.bn2.num_batches_tracked, backbone.layer3.16.conv3.weight, backbone.layer3.16.bn3.weight, backbone.layer3.16.bn3.bias, backbone.layer3.16.bn3.running_mean, backbone.layer3.16.bn3.running_var, backbone.layer3.16.bn3.num_batches_tracked, backbone.layer3.17.conv1.weight, backbone.layer3.17.bn1.weight, backbone.layer3.17.bn1.bias, backbone.layer3.17.bn1.running_mean, backbone.layer3.17.bn1.running_var, backbone.layer3.17.bn1.num_batches_tracked, backbone.layer3.17.conv2.weight, backbone.layer3.17.bn2.weight, backbone.layer3.17.bn2.bias, backbone.layer3.17.bn2.running_mean, backbone.layer3.17.bn2.running_var, backbone.layer3.17.bn2.num_batches_tracked, backbone.layer3.17.conv3.weight, backbone.layer3.17.bn3.weight, backbone.layer3.17.bn3.bias, backbone.layer3.17.bn3.running_mean, backbone.layer3.17.bn3.running_var, backbone.layer3.17.bn3.num_batches_tracked, backbone.layer3.18.conv1.weight, backbone.layer3.18.bn1.weight, backbone.layer3.18.bn1.bias, backbone.layer3.18.bn1.running_mean, backbone.layer3.18.bn1.running_var, backbone.layer3.18.bn1.num_batches_tracked, backbone.layer3.18.conv2.weight, backbone.layer3.18.bn2.weight, backbone.layer3.18.bn2.bias, backbone.layer3.18.bn2.running_mean, backbone.layer3.18.bn2.running_var, backbone.layer3.18.bn2.num_batches_tracked, backbone.layer3.18.conv3.weight, backbone.layer3.18.bn3.weight, backbone.layer3.18.bn3.bias, backbone.layer3.18.bn3.running_mean, backbone.layer3.18.bn3.running_var, backbone.layer3.18.bn3.num_batches_tracked, backbone.layer3.19.conv1.weight, backbone.layer3.19.bn1.weight, backbone.layer3.19.bn1.bias, backbone.layer3.19.bn1.running_mean, backbone.layer3.19.bn1.running_var, backbone.layer3.19.bn1.num_batches_tracked, backbone.layer3.19.conv2.weight, backbone.layer3.19.bn2.weight, backbone.layer3.19.bn2.bias, backbone.layer3.19.bn2.running_mean, backbone.layer3.19.bn2.running_var, backbone.layer3.19.bn2.num_batches_tracked, backbone.layer3.19.conv3.weight, backbone.layer3.19.bn3.weight, backbone.layer3.19.bn3.bias, backbone.layer3.19.bn3.running_mean, backbone.layer3.19.bn3.running_var, backbone.layer3.19.bn3.num_batches_tracked, backbone.layer3.20.conv1.weight, backbone.layer3.20.bn1.weight, backbone.layer3.20.bn1.bias, backbone.layer3.20.bn1.running_mean, backbone.layer3.20.bn1.running_var, backbone.layer3.20.bn1.num_batches_tracked, backbone.layer3.20.conv2.weight, backbone.layer3.20.bn2.weight, backbone.layer3.20.bn2.bias, backbone.layer3.20.bn2.running_mean, backbone.layer3.20.bn2.running_var, backbone.layer3.20.bn2.num_batches_tracked, backbone.layer3.20.conv3.weight, backbone.layer3.20.bn3.weight, backbone.layer3.20.bn3.bias, backbone.layer3.20.bn3.running_mean, backbone.layer3.20.bn3.running_var, backbone.layer3.20.bn3.num_batches_tracked, backbone.layer3.21.conv1.weight, backbone.layer3.21.bn1.weight, backbone.layer3.21.bn1.bias, backbone.layer3.21.bn1.running_mean, backbone.layer3.21.bn1.running_var, backbone.layer3.21.bn1.num_batches_tracked, backbone.layer3.21.conv2.weight, backbone.layer3.21.bn2.weight, backbone.layer3.21.bn2.bias, backbone.layer3.21.bn2.running_mean, backbone.layer3.21.bn2.running_var, backbone.layer3.21.bn2.num_batches_tracked, backbone.layer3.21.conv3.weight, backbone.layer3.21.bn3.weight, backbone.layer3.21.bn3.bias, backbone.layer3.21.bn3.running_mean, backbone.layer3.21.bn3.running_var, backbone.layer3.21.bn3.num_batches_tracked, backbone.layer3.22.conv1.weight, backbone.layer3.22.bn1.weight, backbone.layer3.22.bn1.bias, backbone.layer3.22.bn1.running_mean, backbone.layer3.22.bn1.running_var, backbone.layer3.22.bn1.num_batches_tracked, backbone.layer3.22.conv2.weight, backbone.layer3.22.bn2.weight, backbone.layer3.22.bn2.bias, backbone.layer3.22.bn2.running_mean, backbone.layer3.22.bn2.running_var, backbone.layer3.22.bn2.num_batches_tracked, backbone.layer3.22.conv3.weight, backbone.layer3.22.bn3.weight, backbone.layer3.22.bn3.bias, backbone.layer3.22.bn3.running_mean, backbone.layer3.22.bn3.running_var, backbone.layer3.22.bn3.num_batches_tracked, backbone.layer4.0.conv1.weight, backbone.layer4.0.bn1.weight, backbone.layer4.0.bn1.bias, backbone.layer4.0.bn1.running_mean, backbone.layer4.0.bn1.running_var, backbone.layer4.0.bn1.num_batches_tracked, backbone.layer4.0.conv2.weight, backbone.layer4.0.bn2.weight, backbone.layer4.0.bn2.bias, backbone.layer4.0.bn2.running_mean, backbone.layer4.0.bn2.running_var, backbone.layer4.0.bn2.num_batches_tracked, backbone.layer4.0.conv3.weight, backbone.layer4.0.bn3.weight, backbone.layer4.0.bn3.bias, backbone.layer4.0.bn3.running_mean, backbone.layer4.0.bn3.running_var, backbone.layer4.0.bn3.num_batches_tracked, backbone.layer4.0.downsample.0.weight, backbone.layer4.0.downsample.1.weight, backbone.layer4.0.downsample.1.bias, backbone.layer4.0.downsample.1.running_mean, backbone.layer4.0.downsample.1.running_var, backbone.layer4.0.downsample.1.num_batches_tracked, backbone.layer4.1.conv1.weight, backbone.layer4.1.bn1.weight, backbone.layer4.1.bn1.bias, backbone.layer4.1.bn1.running_mean, backbone.layer4.1.bn1.running_var, backbone.layer4.1.bn1.num_batches_tracked, backbone.layer4.1.conv2.weight, backbone.layer4.1.bn2.weight, backbone.layer4.1.bn2.bias, backbone.layer4.1.bn2.running_mean, backbone.layer4.1.bn2.running_var, backbone.layer4.1.bn2.num_batches_tracked, backbone.layer4.1.conv3.weight, backbone.layer4.1.bn3.weight, backbone.layer4.1.bn3.bias, backbone.layer4.1.bn3.running_mean, backbone.layer4.1.bn3.running_var, backbone.layer4.1.bn3.num_batches_tracked, backbone.layer4.2.conv1.weight, backbone.layer4.2.bn1.weight, backbone.layer4.2.bn1.bias, backbone.layer4.2.bn1.running_mean, backbone.layer4.2.bn1.running_var, backbone.layer4.2.bn1.num_batches_tracked, backbone.layer4.2.conv2.weight, backbone.layer4.2.bn2.weight, backbone.layer4.2.bn2.bias, backbone.layer4.2.bn2.running_mean, backbone.layer4.2.bn2.running_var, backbone.layer4.2.bn2.num_batches_tracked, backbone.layer4.2.conv3.weight, backbone.layer4.2.bn3.weight, backbone.layer4.2.bn3.bias, backbone.layer4.2.bn3.running_mean, backbone.layer4.2.bn3.running_var, backbone.layer4.2.bn3.num_batches_tracked, auxiliary_head.conv_seg.weight, auxiliary_head.conv_seg.bias, auxiliary_head.convs.0.conv.weight, auxiliary_head.convs.0.bn.weight, auxiliary_head.convs.0.bn.bias, auxiliary_head.convs.0.bn.running_mean, auxiliary_head.convs.0.bn.running_var, auxiliary_head.convs.0.bn.num_batches_tracked
|
| 233 |
+
|
| 234 |
+
missing keys in source state_dict: unet.init_conv.weight, unet.init_conv.bias, unet.time_mlp.1.weight, unet.time_mlp.1.bias, unet.time_mlp.3.weight, unet.time_mlp.3.bias, unet.downs.0.0.mlp.1.weight, unet.downs.0.0.mlp.1.bias, unet.downs.0.0.block1.proj.weight, unet.downs.0.0.block1.proj.bias, unet.downs.0.0.block1.norm.weight, unet.downs.0.0.block1.norm.bias, unet.downs.0.0.block2.proj.weight, unet.downs.0.0.block2.proj.bias, unet.downs.0.0.block2.norm.weight, unet.downs.0.0.block2.norm.bias, unet.downs.0.1.mlp.1.weight, unet.downs.0.1.mlp.1.bias, unet.downs.0.1.block1.proj.weight, unet.downs.0.1.block1.proj.bias, unet.downs.0.1.block1.norm.weight, unet.downs.0.1.block1.norm.bias, unet.downs.0.1.block2.proj.weight, unet.downs.0.1.block2.proj.bias, unet.downs.0.1.block2.norm.weight, unet.downs.0.1.block2.norm.bias, unet.downs.0.2.fn.fn.to_qkv.weight, unet.downs.0.2.fn.fn.to_out.0.weight, unet.downs.0.2.fn.fn.to_out.0.bias, unet.downs.0.2.fn.fn.to_out.1.g, unet.downs.0.2.fn.norm.g, unet.downs.0.3.weight, unet.downs.0.3.bias, unet.downs.1.0.mlp.1.weight, unet.downs.1.0.mlp.1.bias, unet.downs.1.0.block1.proj.weight, unet.downs.1.0.block1.proj.bias, unet.downs.1.0.block1.norm.weight, unet.downs.1.0.block1.norm.bias, unet.downs.1.0.block2.proj.weight, unet.downs.1.0.block2.proj.bias, unet.downs.1.0.block2.norm.weight, unet.downs.1.0.block2.norm.bias, unet.downs.1.1.mlp.1.weight, unet.downs.1.1.mlp.1.bias, unet.downs.1.1.block1.proj.weight, unet.downs.1.1.block1.proj.bias, unet.downs.1.1.block1.norm.weight, unet.downs.1.1.block1.norm.bias, unet.downs.1.1.block2.proj.weight, unet.downs.1.1.block2.proj.bias, unet.downs.1.1.block2.norm.weight, unet.downs.1.1.block2.norm.bias, unet.downs.1.2.fn.fn.to_qkv.weight, unet.downs.1.2.fn.fn.to_out.0.weight, unet.downs.1.2.fn.fn.to_out.0.bias, unet.downs.1.2.fn.fn.to_out.1.g, unet.downs.1.2.fn.norm.g, unet.downs.1.3.weight, unet.downs.1.3.bias, unet.downs.2.0.mlp.1.weight, unet.downs.2.0.mlp.1.bias, unet.downs.2.0.block1.proj.weight, unet.downs.2.0.block1.proj.bias, unet.downs.2.0.block1.norm.weight, unet.downs.2.0.block1.norm.bias, unet.downs.2.0.block2.proj.weight, unet.downs.2.0.block2.proj.bias, unet.downs.2.0.block2.norm.weight, unet.downs.2.0.block2.norm.bias, unet.downs.2.1.mlp.1.weight, unet.downs.2.1.mlp.1.bias, unet.downs.2.1.block1.proj.weight, unet.downs.2.1.block1.proj.bias, unet.downs.2.1.block1.norm.weight, unet.downs.2.1.block1.norm.bias, unet.downs.2.1.block2.proj.weight, unet.downs.2.1.block2.proj.bias, unet.downs.2.1.block2.norm.weight, unet.downs.2.1.block2.norm.bias, unet.downs.2.2.fn.fn.to_qkv.weight, unet.downs.2.2.fn.fn.to_out.0.weight, unet.downs.2.2.fn.fn.to_out.0.bias, unet.downs.2.2.fn.fn.to_out.1.g, unet.downs.2.2.fn.norm.g, unet.downs.2.3.weight, unet.downs.2.3.bias, unet.ups.0.0.mlp.1.weight, unet.ups.0.0.mlp.1.bias, unet.ups.0.0.block1.proj.weight, unet.ups.0.0.block1.proj.bias, unet.ups.0.0.block1.norm.weight, unet.ups.0.0.block1.norm.bias, unet.ups.0.0.block2.proj.weight, unet.ups.0.0.block2.proj.bias, unet.ups.0.0.block2.norm.weight, unet.ups.0.0.block2.norm.bias, unet.ups.0.0.res_conv.weight, unet.ups.0.0.res_conv.bias, unet.ups.0.1.mlp.1.weight, unet.ups.0.1.mlp.1.bias, unet.ups.0.1.block1.proj.weight, unet.ups.0.1.block1.proj.bias, unet.ups.0.1.block1.norm.weight, unet.ups.0.1.block1.norm.bias, unet.ups.0.1.block2.proj.weight, unet.ups.0.1.block2.proj.bias, unet.ups.0.1.block2.norm.weight, unet.ups.0.1.block2.norm.bias, unet.ups.0.1.res_conv.weight, unet.ups.0.1.res_conv.bias, unet.ups.0.2.fn.fn.to_qkv.weight, unet.ups.0.2.fn.fn.to_out.0.weight, unet.ups.0.2.fn.fn.to_out.0.bias, unet.ups.0.2.fn.fn.to_out.1.g, unet.ups.0.2.fn.norm.g, unet.ups.0.3.1.weight, unet.ups.0.3.1.bias, unet.ups.1.0.mlp.1.weight, unet.ups.1.0.mlp.1.bias, unet.ups.1.0.block1.proj.weight, unet.ups.1.0.block1.proj.bias, unet.ups.1.0.block1.norm.weight, unet.ups.1.0.block1.norm.bias, unet.ups.1.0.block2.proj.weight, unet.ups.1.0.block2.proj.bias, unet.ups.1.0.block2.norm.weight, unet.ups.1.0.block2.norm.bias, unet.ups.1.0.res_conv.weight, unet.ups.1.0.res_conv.bias, unet.ups.1.1.mlp.1.weight, unet.ups.1.1.mlp.1.bias, unet.ups.1.1.block1.proj.weight, unet.ups.1.1.block1.proj.bias, unet.ups.1.1.block1.norm.weight, unet.ups.1.1.block1.norm.bias, unet.ups.1.1.block2.proj.weight, unet.ups.1.1.block2.proj.bias, unet.ups.1.1.block2.norm.weight, unet.ups.1.1.block2.norm.bias, unet.ups.1.1.res_conv.weight, unet.ups.1.1.res_conv.bias, unet.ups.1.2.fn.fn.to_qkv.weight, unet.ups.1.2.fn.fn.to_out.0.weight, unet.ups.1.2.fn.fn.to_out.0.bias, unet.ups.1.2.fn.fn.to_out.1.g, unet.ups.1.2.fn.norm.g, unet.ups.1.3.1.weight, unet.ups.1.3.1.bias, unet.ups.2.0.mlp.1.weight, unet.ups.2.0.mlp.1.bias, unet.ups.2.0.block1.proj.weight, unet.ups.2.0.block1.proj.bias, unet.ups.2.0.block1.norm.weight, unet.ups.2.0.block1.norm.bias, unet.ups.2.0.block2.proj.weight, unet.ups.2.0.block2.proj.bias, unet.ups.2.0.block2.norm.weight, unet.ups.2.0.block2.norm.bias, unet.ups.2.0.res_conv.weight, unet.ups.2.0.res_conv.bias, unet.ups.2.1.mlp.1.weight, unet.ups.2.1.mlp.1.bias, unet.ups.2.1.block1.proj.weight, unet.ups.2.1.block1.proj.bias, unet.ups.2.1.block1.norm.weight, unet.ups.2.1.block1.norm.bias, unet.ups.2.1.block2.proj.weight, unet.ups.2.1.block2.proj.bias, unet.ups.2.1.block2.norm.weight, unet.ups.2.1.block2.norm.bias, unet.ups.2.1.res_conv.weight, unet.ups.2.1.res_conv.bias, unet.ups.2.2.fn.fn.to_qkv.weight, unet.ups.2.2.fn.fn.to_out.0.weight, unet.ups.2.2.fn.fn.to_out.0.bias, unet.ups.2.2.fn.fn.to_out.1.g, unet.ups.2.2.fn.norm.g, unet.ups.2.3.weight, unet.ups.2.3.bias, unet.mid_block1.mlp.1.weight, unet.mid_block1.mlp.1.bias, unet.mid_block1.block1.proj.weight, unet.mid_block1.block1.proj.bias, unet.mid_block1.block1.norm.weight, unet.mid_block1.block1.norm.bias, unet.mid_block1.block2.proj.weight, unet.mid_block1.block2.proj.bias, unet.mid_block1.block2.norm.weight, unet.mid_block1.block2.norm.bias, unet.mid_attn.fn.fn.to_qkv.weight, unet.mid_attn.fn.fn.to_out.weight, unet.mid_attn.fn.fn.to_out.bias, unet.mid_attn.fn.norm.g, unet.mid_block2.mlp.1.weight, unet.mid_block2.mlp.1.bias, unet.mid_block2.block1.proj.weight, unet.mid_block2.block1.proj.bias, unet.mid_block2.block1.norm.weight, unet.mid_block2.block1.norm.bias, unet.mid_block2.block2.proj.weight, unet.mid_block2.block2.proj.bias, unet.mid_block2.block2.norm.weight, unet.mid_block2.block2.norm.bias, unet.final_res_block.mlp.1.weight, unet.final_res_block.mlp.1.bias, unet.final_res_block.block1.proj.weight, unet.final_res_block.block1.proj.bias, unet.final_res_block.block1.norm.weight, unet.final_res_block.block1.norm.bias, unet.final_res_block.block2.proj.weight, unet.final_res_block.block2.proj.bias, unet.final_res_block.block2.norm.weight, unet.final_res_block.block2.norm.bias, unet.final_res_block.res_conv.weight, unet.final_res_block.res_conv.bias, unet.final_conv.weight, unet.final_conv.bias, conv_seg_new.weight, conv_seg_new.bias, embed.weight
|
| 235 |
+
|
| 236 |
+
2023-03-03 20:38:40,512 - mmseg - INFO - EncoderDecoderFreeze(
|
| 237 |
+
(backbone): ResNetV1cCustomInitWeights(
|
| 238 |
+
(stem): Sequential(
|
| 239 |
+
(0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
|
| 240 |
+
(1): SyncBatchNorm(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 241 |
+
(2): ReLU(inplace=True)
|
| 242 |
+
(3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
| 243 |
+
(4): SyncBatchNorm(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 244 |
+
(5): ReLU(inplace=True)
|
| 245 |
+
(6): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
| 246 |
+
(7): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 247 |
+
(8): ReLU(inplace=True)
|
| 248 |
+
)
|
| 249 |
+
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
|
| 250 |
+
(layer1): ResLayer(
|
| 251 |
+
(0): Bottleneck(
|
| 252 |
+
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 253 |
+
(bn1): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 254 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
| 255 |
+
(bn2): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 256 |
+
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 257 |
+
(bn3): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 258 |
+
(relu): ReLU(inplace=True)
|
| 259 |
+
(downsample): Sequential(
|
| 260 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 261 |
+
(1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 262 |
+
)
|
| 263 |
+
)
|
| 264 |
+
(1): Bottleneck(
|
| 265 |
+
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 266 |
+
(bn1): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 267 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
| 268 |
+
(bn2): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 269 |
+
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 270 |
+
(bn3): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 271 |
+
(relu): ReLU(inplace=True)
|
| 272 |
+
)
|
| 273 |
+
(2): Bottleneck(
|
| 274 |
+
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 275 |
+
(bn1): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 276 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
| 277 |
+
(bn2): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 278 |
+
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 279 |
+
(bn3): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 280 |
+
(relu): ReLU(inplace=True)
|
| 281 |
+
)
|
| 282 |
+
)
|
| 283 |
+
(layer2): ResLayer(
|
| 284 |
+
(0): Bottleneck(
|
| 285 |
+
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 286 |
+
(bn1): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 287 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
|
| 288 |
+
(bn2): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 289 |
+
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 290 |
+
(bn3): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 291 |
+
(relu): ReLU(inplace=True)
|
| 292 |
+
(downsample): Sequential(
|
| 293 |
+
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
|
| 294 |
+
(1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 295 |
+
)
|
| 296 |
+
)
|
| 297 |
+
(1): Bottleneck(
|
| 298 |
+
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 299 |
+
(bn1): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 300 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
| 301 |
+
(bn2): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 302 |
+
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 303 |
+
(bn3): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 304 |
+
(relu): ReLU(inplace=True)
|
| 305 |
+
)
|
| 306 |
+
(2): Bottleneck(
|
| 307 |
+
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 308 |
+
(bn1): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 309 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
| 310 |
+
(bn2): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 311 |
+
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 312 |
+
(bn3): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 313 |
+
(relu): ReLU(inplace=True)
|
| 314 |
+
)
|
| 315 |
+
(3): Bottleneck(
|
| 316 |
+
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 317 |
+
(bn1): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 318 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
| 319 |
+
(bn2): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 320 |
+
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 321 |
+
(bn3): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 322 |
+
(relu): ReLU(inplace=True)
|
| 323 |
+
)
|
| 324 |
+
)
|
| 325 |
+
(layer3): ResLayer(
|
| 326 |
+
(0): Bottleneck(
|
| 327 |
+
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 328 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 329 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
| 330 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 331 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 332 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 333 |
+
(relu): ReLU(inplace=True)
|
| 334 |
+
(downsample): Sequential(
|
| 335 |
+
(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 336 |
+
(1): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 337 |
+
)
|
| 338 |
+
)
|
| 339 |
+
(1): Bottleneck(
|
| 340 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 341 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 342 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 343 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 344 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 345 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 346 |
+
(relu): ReLU(inplace=True)
|
| 347 |
+
)
|
| 348 |
+
(2): Bottleneck(
|
| 349 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 350 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 351 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 352 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 353 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 354 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 355 |
+
(relu): ReLU(inplace=True)
|
| 356 |
+
)
|
| 357 |
+
(3): Bottleneck(
|
| 358 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 359 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 360 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 361 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 362 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 363 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 364 |
+
(relu): ReLU(inplace=True)
|
| 365 |
+
)
|
| 366 |
+
(4): Bottleneck(
|
| 367 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 368 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 369 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 370 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 371 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 372 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 373 |
+
(relu): ReLU(inplace=True)
|
| 374 |
+
)
|
| 375 |
+
(5): Bottleneck(
|
| 376 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 377 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 378 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 379 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 380 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 381 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 382 |
+
(relu): ReLU(inplace=True)
|
| 383 |
+
)
|
| 384 |
+
(6): Bottleneck(
|
| 385 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 386 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 387 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 388 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 389 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 390 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 391 |
+
(relu): ReLU(inplace=True)
|
| 392 |
+
)
|
| 393 |
+
(7): Bottleneck(
|
| 394 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 395 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 396 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 397 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 398 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 399 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 400 |
+
(relu): ReLU(inplace=True)
|
| 401 |
+
)
|
| 402 |
+
(8): Bottleneck(
|
| 403 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 404 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 405 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 406 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 407 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 408 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 409 |
+
(relu): ReLU(inplace=True)
|
| 410 |
+
)
|
| 411 |
+
(9): Bottleneck(
|
| 412 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 413 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 414 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 415 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 416 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 417 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 418 |
+
(relu): ReLU(inplace=True)
|
| 419 |
+
)
|
| 420 |
+
(10): Bottleneck(
|
| 421 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 422 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 423 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 424 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 425 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 426 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 427 |
+
(relu): ReLU(inplace=True)
|
| 428 |
+
)
|
| 429 |
+
(11): Bottleneck(
|
| 430 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 431 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 432 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 433 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 434 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 435 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 436 |
+
(relu): ReLU(inplace=True)
|
| 437 |
+
)
|
| 438 |
+
(12): Bottleneck(
|
| 439 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 440 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 441 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 442 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 443 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 444 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 445 |
+
(relu): ReLU(inplace=True)
|
| 446 |
+
)
|
| 447 |
+
(13): Bottleneck(
|
| 448 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 449 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 450 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 451 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 452 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 453 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 454 |
+
(relu): ReLU(inplace=True)
|
| 455 |
+
)
|
| 456 |
+
(14): Bottleneck(
|
| 457 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 458 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 459 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 460 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 461 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 462 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 463 |
+
(relu): ReLU(inplace=True)
|
| 464 |
+
)
|
| 465 |
+
(15): Bottleneck(
|
| 466 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 467 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 468 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 469 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 470 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 471 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 472 |
+
(relu): ReLU(inplace=True)
|
| 473 |
+
)
|
| 474 |
+
(16): Bottleneck(
|
| 475 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 476 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 477 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 478 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 479 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 480 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 481 |
+
(relu): ReLU(inplace=True)
|
| 482 |
+
)
|
| 483 |
+
(17): Bottleneck(
|
| 484 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 485 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 486 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 487 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 488 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 489 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 490 |
+
(relu): ReLU(inplace=True)
|
| 491 |
+
)
|
| 492 |
+
(18): Bottleneck(
|
| 493 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 494 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 495 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 496 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 497 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 498 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 499 |
+
(relu): ReLU(inplace=True)
|
| 500 |
+
)
|
| 501 |
+
(19): Bottleneck(
|
| 502 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 503 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 504 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 505 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 506 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 507 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 508 |
+
(relu): ReLU(inplace=True)
|
| 509 |
+
)
|
| 510 |
+
(20): Bottleneck(
|
| 511 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 512 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 513 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 514 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 515 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 516 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 517 |
+
(relu): ReLU(inplace=True)
|
| 518 |
+
)
|
| 519 |
+
(21): Bottleneck(
|
| 520 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 521 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 522 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 523 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 524 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 525 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 526 |
+
(relu): ReLU(inplace=True)
|
| 527 |
+
)
|
| 528 |
+
(22): Bottleneck(
|
| 529 |
+
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 530 |
+
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 531 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 532 |
+
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 533 |
+
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 534 |
+
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 535 |
+
(relu): ReLU(inplace=True)
|
| 536 |
+
)
|
| 537 |
+
)
|
| 538 |
+
(layer4): ResLayer(
|
| 539 |
+
(0): Bottleneck(
|
| 540 |
+
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 541 |
+
(bn1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 542 |
+
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)
|
| 543 |
+
(bn2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 544 |
+
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 545 |
+
(bn3): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 546 |
+
(relu): ReLU(inplace=True)
|
| 547 |
+
(downsample): Sequential(
|
| 548 |
+
(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 549 |
+
(1): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 550 |
+
)
|
| 551 |
+
)
|
| 552 |
+
(1): Bottleneck(
|
| 553 |
+
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 554 |
+
(bn1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 555 |
+
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4), bias=False)
|
| 556 |
+
(bn2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 557 |
+
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 558 |
+
(bn3): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 559 |
+
(relu): ReLU(inplace=True)
|
| 560 |
+
)
|
| 561 |
+
(2): Bottleneck(
|
| 562 |
+
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 563 |
+
(bn1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 564 |
+
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4), bias=False)
|
| 565 |
+
(bn2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 566 |
+
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 567 |
+
(bn3): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 568 |
+
(relu): ReLU(inplace=True)
|
| 569 |
+
)
|
| 570 |
+
)
|
| 571 |
+
)
|
| 572 |
+
init_cfg={'type': 'Pretrained', 'checkpoint': 'pretrained/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth'}
|
| 573 |
+
(decode_head): DepthwiseSeparableASPPHeadUnetFCHeadSingleStep(
|
| 574 |
+
input_transform=None, ignore_index=0, align_corners=False
|
| 575 |
+
(loss_decode): CrossEntropyLoss(avg_non_ignore=False)
|
| 576 |
+
(conv_seg): None
|
| 577 |
+
(dropout): Dropout2d(p=0.1, inplace=False)
|
| 578 |
+
(image_pool): Sequential(
|
| 579 |
+
(0): AdaptiveAvgPool2d(output_size=1)
|
| 580 |
+
(1): ConvModule(
|
| 581 |
+
(conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 582 |
+
(bn): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 583 |
+
(activate): ReLU(inplace=True)
|
| 584 |
+
)
|
| 585 |
+
)
|
| 586 |
+
(aspp_modules): DepthwiseSeparableASPPModule(
|
| 587 |
+
(0): ConvModule(
|
| 588 |
+
(conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 589 |
+
(bn): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 590 |
+
(activate): ReLU(inplace=True)
|
| 591 |
+
)
|
| 592 |
+
(1): DepthwiseSeparableConvModule(
|
| 593 |
+
(depthwise_conv): ConvModule(
|
| 594 |
+
(conv): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(12, 12), dilation=(12, 12), groups=2048, bias=False)
|
| 595 |
+
(bn): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 596 |
+
(activate): ReLU(inplace=True)
|
| 597 |
+
)
|
| 598 |
+
(pointwise_conv): ConvModule(
|
| 599 |
+
(conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 600 |
+
(bn): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 601 |
+
(activate): ReLU(inplace=True)
|
| 602 |
+
)
|
| 603 |
+
)
|
| 604 |
+
(2): DepthwiseSeparableConvModule(
|
| 605 |
+
(depthwise_conv): ConvModule(
|
| 606 |
+
(conv): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(24, 24), dilation=(24, 24), groups=2048, bias=False)
|
| 607 |
+
(bn): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 608 |
+
(activate): ReLU(inplace=True)
|
| 609 |
+
)
|
| 610 |
+
(pointwise_conv): ConvModule(
|
| 611 |
+
(conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 612 |
+
(bn): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 613 |
+
(activate): ReLU(inplace=True)
|
| 614 |
+
)
|
| 615 |
+
)
|
| 616 |
+
(3): DepthwiseSeparableConvModule(
|
| 617 |
+
(depthwise_conv): ConvModule(
|
| 618 |
+
(conv): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(36, 36), dilation=(36, 36), groups=2048, bias=False)
|
| 619 |
+
(bn): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 620 |
+
(activate): ReLU(inplace=True)
|
| 621 |
+
)
|
| 622 |
+
(pointwise_conv): ConvModule(
|
| 623 |
+
(conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 624 |
+
(bn): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 625 |
+
(activate): ReLU(inplace=True)
|
| 626 |
+
)
|
| 627 |
+
)
|
| 628 |
+
)
|
| 629 |
+
(bottleneck): ConvModule(
|
| 630 |
+
(conv): Conv2d(2560, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
| 631 |
+
(bn): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 632 |
+
(activate): ReLU(inplace=True)
|
| 633 |
+
)
|
| 634 |
+
(c1_bottleneck): ConvModule(
|
| 635 |
+
(conv): Conv2d(256, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 636 |
+
(bn): SyncBatchNorm(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 637 |
+
(activate): ReLU(inplace=True)
|
| 638 |
+
)
|
| 639 |
+
(sep_bottleneck): Sequential(
|
| 640 |
+
(0): DepthwiseSeparableConvModule(
|
| 641 |
+
(depthwise_conv): ConvModule(
|
| 642 |
+
(conv): Conv2d(560, 560, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=560, bias=False)
|
| 643 |
+
(bn): SyncBatchNorm(560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 644 |
+
(activate): ReLU(inplace=True)
|
| 645 |
+
)
|
| 646 |
+
(pointwise_conv): ConvModule(
|
| 647 |
+
(conv): Conv2d(560, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 648 |
+
(bn): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 649 |
+
(activate): ReLU(inplace=True)
|
| 650 |
+
)
|
| 651 |
+
)
|
| 652 |
+
(1): DepthwiseSeparableConvModule(
|
| 653 |
+
(depthwise_conv): ConvModule(
|
| 654 |
+
(conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512, bias=False)
|
| 655 |
+
(bn): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 656 |
+
(activate): ReLU(inplace=True)
|
| 657 |
+
)
|
| 658 |
+
(pointwise_conv): ConvModule(
|
| 659 |
+
(conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 660 |
+
(bn): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
| 661 |
+
(activate): ReLU(inplace=True)
|
| 662 |
+
)
|
| 663 |
+
)
|
| 664 |
+
)
|
| 665 |
+
(unet): Unet(
|
| 666 |
+
(init_conv): Conv2d(528, 256, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3))
|
| 667 |
+
(time_mlp): Sequential(
|
| 668 |
+
(0): SinusoidalPosEmb()
|
| 669 |
+
(1): Linear(in_features=256, out_features=1024, bias=True)
|
| 670 |
+
(2): GELU(approximate='none')
|
| 671 |
+
(3): Linear(in_features=1024, out_features=1024, bias=True)
|
| 672 |
+
)
|
| 673 |
+
(downs): ModuleList(
|
| 674 |
+
(0): ModuleList(
|
| 675 |
+
(0): ResnetBlock(
|
| 676 |
+
(mlp): Sequential(
|
| 677 |
+
(0): SiLU()
|
| 678 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
| 679 |
+
)
|
| 680 |
+
(block1): Block(
|
| 681 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 682 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 683 |
+
(act): SiLU()
|
| 684 |
+
)
|
| 685 |
+
(block2): Block(
|
| 686 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 687 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 688 |
+
(act): SiLU()
|
| 689 |
+
)
|
| 690 |
+
(res_conv): Identity()
|
| 691 |
+
)
|
| 692 |
+
(1): ResnetBlock(
|
| 693 |
+
(mlp): Sequential(
|
| 694 |
+
(0): SiLU()
|
| 695 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
| 696 |
+
)
|
| 697 |
+
(block1): Block(
|
| 698 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 699 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 700 |
+
(act): SiLU()
|
| 701 |
+
)
|
| 702 |
+
(block2): Block(
|
| 703 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 704 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 705 |
+
(act): SiLU()
|
| 706 |
+
)
|
| 707 |
+
(res_conv): Identity()
|
| 708 |
+
)
|
| 709 |
+
(2): Residual(
|
| 710 |
+
(fn): PreNorm(
|
| 711 |
+
(fn): LinearAttention(
|
| 712 |
+
(to_qkv): Conv2d(256, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 713 |
+
(to_out): Sequential(
|
| 714 |
+
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 715 |
+
(1): LayerNorm()
|
| 716 |
+
)
|
| 717 |
+
)
|
| 718 |
+
(norm): LayerNorm()
|
| 719 |
+
)
|
| 720 |
+
)
|
| 721 |
+
(3): Conv2d(256, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
| 722 |
+
)
|
| 723 |
+
(1): ModuleList(
|
| 724 |
+
(0): ResnetBlock(
|
| 725 |
+
(mlp): Sequential(
|
| 726 |
+
(0): SiLU()
|
| 727 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
| 728 |
+
)
|
| 729 |
+
(block1): Block(
|
| 730 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 731 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 732 |
+
(act): SiLU()
|
| 733 |
+
)
|
| 734 |
+
(block2): Block(
|
| 735 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 736 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 737 |
+
(act): SiLU()
|
| 738 |
+
)
|
| 739 |
+
(res_conv): Identity()
|
| 740 |
+
)
|
| 741 |
+
(1): ResnetBlock(
|
| 742 |
+
(mlp): Sequential(
|
| 743 |
+
(0): SiLU()
|
| 744 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
| 745 |
+
)
|
| 746 |
+
(block1): Block(
|
| 747 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 748 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 749 |
+
(act): SiLU()
|
| 750 |
+
)
|
| 751 |
+
(block2): Block(
|
| 752 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 753 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 754 |
+
(act): SiLU()
|
| 755 |
+
)
|
| 756 |
+
(res_conv): Identity()
|
| 757 |
+
)
|
| 758 |
+
(2): Residual(
|
| 759 |
+
(fn): PreNorm(
|
| 760 |
+
(fn): LinearAttention(
|
| 761 |
+
(to_qkv): Conv2d(256, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 762 |
+
(to_out): Sequential(
|
| 763 |
+
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 764 |
+
(1): LayerNorm()
|
| 765 |
+
)
|
| 766 |
+
)
|
| 767 |
+
(norm): LayerNorm()
|
| 768 |
+
)
|
| 769 |
+
)
|
| 770 |
+
(3): Conv2d(256, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
| 771 |
+
)
|
| 772 |
+
(2): ModuleList(
|
| 773 |
+
(0): ResnetBlock(
|
| 774 |
+
(mlp): Sequential(
|
| 775 |
+
(0): SiLU()
|
| 776 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
| 777 |
+
)
|
| 778 |
+
(block1): Block(
|
| 779 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 780 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 781 |
+
(act): SiLU()
|
| 782 |
+
)
|
| 783 |
+
(block2): Block(
|
| 784 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 785 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 786 |
+
(act): SiLU()
|
| 787 |
+
)
|
| 788 |
+
(res_conv): Identity()
|
| 789 |
+
)
|
| 790 |
+
(1): ResnetBlock(
|
| 791 |
+
(mlp): Sequential(
|
| 792 |
+
(0): SiLU()
|
| 793 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
| 794 |
+
)
|
| 795 |
+
(block1): Block(
|
| 796 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 797 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 798 |
+
(act): SiLU()
|
| 799 |
+
)
|
| 800 |
+
(block2): Block(
|
| 801 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 802 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 803 |
+
(act): SiLU()
|
| 804 |
+
)
|
| 805 |
+
(res_conv): Identity()
|
| 806 |
+
)
|
| 807 |
+
(2): Residual(
|
| 808 |
+
(fn): PreNorm(
|
| 809 |
+
(fn): LinearAttention(
|
| 810 |
+
(to_qkv): Conv2d(256, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 811 |
+
(to_out): Sequential(
|
| 812 |
+
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 813 |
+
(1): LayerNorm()
|
| 814 |
+
)
|
| 815 |
+
)
|
| 816 |
+
(norm): LayerNorm()
|
| 817 |
+
)
|
| 818 |
+
)
|
| 819 |
+
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 820 |
+
)
|
| 821 |
+
)
|
| 822 |
+
(ups): ModuleList(
|
| 823 |
+
(0): ModuleList(
|
| 824 |
+
(0): ResnetBlock(
|
| 825 |
+
(mlp): Sequential(
|
| 826 |
+
(0): SiLU()
|
| 827 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
| 828 |
+
)
|
| 829 |
+
(block1): Block(
|
| 830 |
+
(proj): WeightStandardizedConv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 831 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 832 |
+
(act): SiLU()
|
| 833 |
+
)
|
| 834 |
+
(block2): Block(
|
| 835 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 836 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 837 |
+
(act): SiLU()
|
| 838 |
+
)
|
| 839 |
+
(res_conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 840 |
+
)
|
| 841 |
+
(1): ResnetBlock(
|
| 842 |
+
(mlp): Sequential(
|
| 843 |
+
(0): SiLU()
|
| 844 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
| 845 |
+
)
|
| 846 |
+
(block1): Block(
|
| 847 |
+
(proj): WeightStandardizedConv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 848 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 849 |
+
(act): SiLU()
|
| 850 |
+
)
|
| 851 |
+
(block2): Block(
|
| 852 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 853 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 854 |
+
(act): SiLU()
|
| 855 |
+
)
|
| 856 |
+
(res_conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 857 |
+
)
|
| 858 |
+
(2): Residual(
|
| 859 |
+
(fn): PreNorm(
|
| 860 |
+
(fn): LinearAttention(
|
| 861 |
+
(to_qkv): Conv2d(256, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 862 |
+
(to_out): Sequential(
|
| 863 |
+
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 864 |
+
(1): LayerNorm()
|
| 865 |
+
)
|
| 866 |
+
)
|
| 867 |
+
(norm): LayerNorm()
|
| 868 |
+
)
|
| 869 |
+
)
|
| 870 |
+
(3): Sequential(
|
| 871 |
+
(0): Upsample(scale_factor=2.0, mode=nearest)
|
| 872 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 873 |
+
)
|
| 874 |
+
)
|
| 875 |
+
(1): ModuleList(
|
| 876 |
+
(0): ResnetBlock(
|
| 877 |
+
(mlp): Sequential(
|
| 878 |
+
(0): SiLU()
|
| 879 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
| 880 |
+
)
|
| 881 |
+
(block1): Block(
|
| 882 |
+
(proj): WeightStandardizedConv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 883 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 884 |
+
(act): SiLU()
|
| 885 |
+
)
|
| 886 |
+
(block2): Block(
|
| 887 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 888 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 889 |
+
(act): SiLU()
|
| 890 |
+
)
|
| 891 |
+
(res_conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 892 |
+
)
|
| 893 |
+
(1): ResnetBlock(
|
| 894 |
+
(mlp): Sequential(
|
| 895 |
+
(0): SiLU()
|
| 896 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
| 897 |
+
)
|
| 898 |
+
(block1): Block(
|
| 899 |
+
(proj): WeightStandardizedConv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 900 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 901 |
+
(act): SiLU()
|
| 902 |
+
)
|
| 903 |
+
(block2): Block(
|
| 904 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 905 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 906 |
+
(act): SiLU()
|
| 907 |
+
)
|
| 908 |
+
(res_conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 909 |
+
)
|
| 910 |
+
(2): Residual(
|
| 911 |
+
(fn): PreNorm(
|
| 912 |
+
(fn): LinearAttention(
|
| 913 |
+
(to_qkv): Conv2d(256, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 914 |
+
(to_out): Sequential(
|
| 915 |
+
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 916 |
+
(1): LayerNorm()
|
| 917 |
+
)
|
| 918 |
+
)
|
| 919 |
+
(norm): LayerNorm()
|
| 920 |
+
)
|
| 921 |
+
)
|
| 922 |
+
(3): Sequential(
|
| 923 |
+
(0): Upsample(scale_factor=2.0, mode=nearest)
|
| 924 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 925 |
+
)
|
| 926 |
+
)
|
| 927 |
+
(2): ModuleList(
|
| 928 |
+
(0): ResnetBlock(
|
| 929 |
+
(mlp): Sequential(
|
| 930 |
+
(0): SiLU()
|
| 931 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
| 932 |
+
)
|
| 933 |
+
(block1): Block(
|
| 934 |
+
(proj): WeightStandardizedConv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 935 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 936 |
+
(act): SiLU()
|
| 937 |
+
)
|
| 938 |
+
(block2): Block(
|
| 939 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 940 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 941 |
+
(act): SiLU()
|
| 942 |
+
)
|
| 943 |
+
(res_conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 944 |
+
)
|
| 945 |
+
(1): ResnetBlock(
|
| 946 |
+
(mlp): Sequential(
|
| 947 |
+
(0): SiLU()
|
| 948 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
| 949 |
+
)
|
| 950 |
+
(block1): Block(
|
| 951 |
+
(proj): WeightStandardizedConv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 952 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 953 |
+
(act): SiLU()
|
| 954 |
+
)
|
| 955 |
+
(block2): Block(
|
| 956 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 957 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 958 |
+
(act): SiLU()
|
| 959 |
+
)
|
| 960 |
+
(res_conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 961 |
+
)
|
| 962 |
+
(2): Residual(
|
| 963 |
+
(fn): PreNorm(
|
| 964 |
+
(fn): LinearAttention(
|
| 965 |
+
(to_qkv): Conv2d(256, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 966 |
+
(to_out): Sequential(
|
| 967 |
+
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 968 |
+
(1): LayerNorm()
|
| 969 |
+
)
|
| 970 |
+
)
|
| 971 |
+
(norm): LayerNorm()
|
| 972 |
+
)
|
| 973 |
+
)
|
| 974 |
+
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 975 |
+
)
|
| 976 |
+
)
|
| 977 |
+
(mid_block1): ResnetBlock(
|
| 978 |
+
(mlp): Sequential(
|
| 979 |
+
(0): SiLU()
|
| 980 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
| 981 |
+
)
|
| 982 |
+
(block1): Block(
|
| 983 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 984 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 985 |
+
(act): SiLU()
|
| 986 |
+
)
|
| 987 |
+
(block2): Block(
|
| 988 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 989 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 990 |
+
(act): SiLU()
|
| 991 |
+
)
|
| 992 |
+
(res_conv): Identity()
|
| 993 |
+
)
|
| 994 |
+
(mid_attn): Residual(
|
| 995 |
+
(fn): PreNorm(
|
| 996 |
+
(fn): Attention(
|
| 997 |
+
(to_qkv): Conv2d(256, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
| 998 |
+
(to_out): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 999 |
+
)
|
| 1000 |
+
(norm): LayerNorm()
|
| 1001 |
+
)
|
| 1002 |
+
)
|
| 1003 |
+
(mid_block2): ResnetBlock(
|
| 1004 |
+
(mlp): Sequential(
|
| 1005 |
+
(0): SiLU()
|
| 1006 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
| 1007 |
+
)
|
| 1008 |
+
(block1): Block(
|
| 1009 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1010 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 1011 |
+
(act): SiLU()
|
| 1012 |
+
)
|
| 1013 |
+
(block2): Block(
|
| 1014 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1015 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 1016 |
+
(act): SiLU()
|
| 1017 |
+
)
|
| 1018 |
+
(res_conv): Identity()
|
| 1019 |
+
)
|
| 1020 |
+
(final_res_block): ResnetBlock(
|
| 1021 |
+
(mlp): Sequential(
|
| 1022 |
+
(0): SiLU()
|
| 1023 |
+
(1): Linear(in_features=1024, out_features=512, bias=True)
|
| 1024 |
+
)
|
| 1025 |
+
(block1): Block(
|
| 1026 |
+
(proj): WeightStandardizedConv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1027 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 1028 |
+
(act): SiLU()
|
| 1029 |
+
)
|
| 1030 |
+
(block2): Block(
|
| 1031 |
+
(proj): WeightStandardizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1032 |
+
(norm): GroupNorm(8, 256, eps=1e-05, affine=True)
|
| 1033 |
+
(act): SiLU()
|
| 1034 |
+
)
|
| 1035 |
+
(res_conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 1036 |
+
)
|
| 1037 |
+
(final_conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 1038 |
+
)
|
| 1039 |
+
(conv_seg_new): Conv2d(256, 20, kernel_size=(1, 1), stride=(1, 1))
|
| 1040 |
+
(embed): Embedding(20, 16)
|
| 1041 |
+
)
|
| 1042 |
+
init_cfg={'type': 'Pretrained', 'checkpoint': 'pretrained/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth'}
|
| 1043 |
+
)
|
| 1044 |
+
2023-03-03 20:38:40,578 - mmseg - INFO - Loaded 2975 images
|
| 1045 |
+
2023-03-03 20:38:41,636 - mmseg - INFO - Loaded 500 images
|
| 1046 |
+
2023-03-03 20:38:41,642 - mmseg - INFO - Start running, host: laizeqiang@SH-IDC1-10-140-37-151, work_dir: /mnt/petrelfs/laizeqiang/mmseg-baseline/work_dirs2/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_cityscapes_pretrained_freeze_embed_80k_cityscapes20
|
| 1047 |
+
2023-03-03 20:38:41,642 - mmseg - INFO - Hooks will be executed in the following order:
|
| 1048 |
+
before_run:
|
| 1049 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
| 1050 |
+
(NORMAL ) CheckpointHook
|
| 1051 |
+
(LOW ) DistEvalHookMultiSteps
|
| 1052 |
+
(VERY_LOW ) TextLoggerHook
|
| 1053 |
+
--------------------
|
| 1054 |
+
before_train_epoch:
|
| 1055 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
| 1056 |
+
(LOW ) IterTimerHook
|
| 1057 |
+
(LOW ) DistEvalHookMultiSteps
|
| 1058 |
+
(VERY_LOW ) TextLoggerHook
|
| 1059 |
+
--------------------
|
| 1060 |
+
before_train_iter:
|
| 1061 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
| 1062 |
+
(LOW ) IterTimerHook
|
| 1063 |
+
(LOW ) DistEvalHookMultiSteps
|
| 1064 |
+
--------------------
|
| 1065 |
+
after_train_iter:
|
| 1066 |
+
(ABOVE_NORMAL) OptimizerHook
|
| 1067 |
+
(NORMAL ) CheckpointHook
|
| 1068 |
+
(LOW ) IterTimerHook
|
| 1069 |
+
(LOW ) DistEvalHookMultiSteps
|
| 1070 |
+
(VERY_LOW ) TextLoggerHook
|
| 1071 |
+
--------------------
|
| 1072 |
+
after_train_epoch:
|
| 1073 |
+
(NORMAL ) CheckpointHook
|
| 1074 |
+
(LOW ) DistEvalHookMultiSteps
|
| 1075 |
+
(VERY_LOW ) TextLoggerHook
|
| 1076 |
+
--------------------
|
| 1077 |
+
before_val_epoch:
|
| 1078 |
+
(LOW ) IterTimerHook
|
| 1079 |
+
(VERY_LOW ) TextLoggerHook
|
| 1080 |
+
--------------------
|
| 1081 |
+
before_val_iter:
|
| 1082 |
+
(LOW ) IterTimerHook
|
| 1083 |
+
--------------------
|
| 1084 |
+
after_val_iter:
|
| 1085 |
+
(LOW ) IterTimerHook
|
| 1086 |
+
--------------------
|
| 1087 |
+
after_val_epoch:
|
| 1088 |
+
(VERY_LOW ) TextLoggerHook
|
| 1089 |
+
--------------------
|
| 1090 |
+
after_run:
|
| 1091 |
+
(VERY_LOW ) TextLoggerHook
|
| 1092 |
+
--------------------
|
| 1093 |
+
2023-03-03 20:38:41,642 - mmseg - INFO - workflow: [('train', 1)], max: 80000 iters
|
| 1094 |
+
2023-03-03 20:38:41,642 - mmseg - INFO - Checkpoints will be saved to /mnt/petrelfs/laizeqiang/mmseg-baseline/work_dirs2/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_cityscapes_pretrained_freeze_embed_80k_cityscapes20 by HardDiskBackend.
|
| 1095 |
+
2023-03-03 20:39:26,258 - mmseg - INFO - Iter [50/80000] lr: 7.350e-06, eta: 14:40:40, time: 0.661, data_time: 0.014, memory: 67605, decode.loss_ce: 1.8576, decode.acc_seg: 63.8241, loss: 1.8576
|
cityscapes/deeplabv3plus_r101_singlestep/20230303_203832.log.json
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{"env_info": "sys.platform: linux\nPython: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0]\nCUDA available: True\nGPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB\nCUDA_HOME: /mnt/petrelfs/laizeqiang/miniconda3/envs/torch\nNVCC: Cuda compilation tools, release 11.6, V11.6.124\nGCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)\nPyTorch: 1.13.1\nPyTorch compiling details: PyTorch built with:\n - GCC 9.3\n - C++ Version: 201402\n - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - LAPACK is enabled (usually provided by MKL)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 11.6\n - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37\n - CuDNN 8.3.2 (built against CUDA 11.5)\n - Magma 2.6.1\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, \n\nTorchVision: 0.14.1\nOpenCV: 4.7.0\nMMCV: 1.7.1\nMMCV Compiler: GCC 9.3\nMMCV CUDA Compiler: 11.6\nMMSegmentation: 0.30.0+c844fc6", "seed": 835892801, "exp_name": "deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_cityscapes_pretrained_freeze_embed_80k_cityscapes20.py", "mmseg_version": "0.30.0+c844fc6", "config": "norm_cfg = dict(type='SyncBN', requires_grad=True)\nmodel = dict(\n type='EncoderDecoderFreeze',\n pretrained=\n 'pretrained/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth',\n backbone=dict(\n type='ResNetV1cCustomInitWeights',\n depth=101,\n num_stages=4,\n out_indices=(0, 1, 2, 3),\n dilations=(1, 1, 2, 4),\n strides=(1, 2, 1, 1),\n norm_cfg=dict(type='SyncBN', requires_grad=True),\n norm_eval=False,\n style='pytorch',\n contract_dilation=True,\n pretrained=\n 'pretrained/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth'\n ),\n decode_head=dict(\n type='DepthwiseSeparableASPPHeadUnetFCHeadSingleStep',\n pretrained=\n 'pretrained/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth',\n dim=256,\n out_dim=256,\n unet_channels=528,\n dim_mults=[1, 1, 1],\n cat_embedding_dim=16,\n ignore_index=0,\n in_channels=2048,\n in_index=3,\n channels=512,\n dilations=(1, 12, 24, 36),\n c1_in_channels=256,\n c1_channels=48,\n dropout_ratio=0.1,\n num_classes=20,\n norm_cfg=dict(type='SyncBN', requires_grad=True),\n align_corners=False,\n loss_decode=dict(\n type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),\n auxiliary_head=None,\n train_cfg=dict(),\n test_cfg=dict(mode='whole'),\n freeze_parameters=['backbone', 'decode_head'])\ndataset_type = 'Cityscapes20Dataset'\ndata_root = 'data/cityscapes/'\nimg_norm_cfg = dict(\n mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)\ncrop_size = (512, 1024)\ntrain_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotationsCityscapes20'),\n dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 1024), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n]\ntest_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 1024),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n]\ndata = dict(\n samples_per_gpu=2,\n workers_per_gpu=2,\n train=dict(\n type='Cityscapes20Dataset',\n data_root='data/cityscapes/',\n img_dir='leftImg8bit/train',\n ann_dir='gtFine/train',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotationsCityscapes20'),\n dict(\n type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 1024), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n ]),\n val=dict(\n type='Cityscapes20Dataset',\n data_root='data/cityscapes/',\n img_dir='leftImg8bit/val',\n ann_dir='gtFine/val',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 1024),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]),\n test=dict(\n type='Cityscapes20Dataset',\n data_root='data/cityscapes/',\n img_dir='leftImg8bit/val',\n ann_dir='gtFine/val',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 1024),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]))\nlog_config = dict(\n interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])\ndist_params = dict(backend='nccl')\nlog_level = 'INFO'\nload_from = None\nresume_from = None\nworkflow = [('train', 1)]\ncudnn_benchmark = True\noptimizer = dict(\n type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)\noptimizer_config = dict()\nlr_config = dict(\n policy='step',\n warmup='linear',\n warmup_iters=1000,\n warmup_ratio=1e-06,\n step=10000,\n gamma=0.5,\n min_lr=1e-06,\n by_epoch=False)\nrunner = dict(type='IterBasedRunner', max_iters=80000)\ncheckpoint_config = dict(by_epoch=False, interval=8000, max_keep_ckpts=1)\nevaluation = dict(\n interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')\ncheckpoint = 'pretrained/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth'\nwork_dir = './work_dirs2/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_cityscapes_pretrained_freeze_embed_80k_cityscapes20'\ngpu_ids = range(0, 8)\nauto_resume = True\ndevice = 'cuda'\nseed = 835892801\n", "CLASSES": ["background", "road", "sidewalk", "building", "wall", "fence", "pole", "traffic light", "traffic sign", "vegetation", "terrain", "sky", "person", "rider", "car", "truck", "bus", "train", "motorcycle", "bicycle"], "PALETTE": [[0, 0, 0], [128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153], [153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152], [70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32]], "hook_msgs": {}}
|
| 2 |
+
{"mode": "train", "epoch": 1, "iter": 50, "lr": 1e-05, "memory": 67605, "data_time": 0.01446, "decode.loss_ce": 1.8576, "decode.acc_seg": 63.82413, "loss": 1.8576, "time": 0.66091}
|
cityscapes/deeplabv3plus_r101_singlestep/20230303_203945.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
cityscapes/deeplabv3plus_r101_singlestep/20230303_203945.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
cityscapes/deeplabv3plus_r101_singlestep/best_mIoU_iter_64000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:94a167fa82fdd9b5886f3ecfb64b061bb096c43d88edbe7eca35a6f0947bed8d
|
| 3 |
+
size 770176920
|
cityscapes/deeplabv3plus_r101_singlestep/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_cityscapes_pretrained_freeze_embed_80k_cityscapes20.py
ADDED
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
| 2 |
+
model = dict(
|
| 3 |
+
type='EncoderDecoderFreeze',
|
| 4 |
+
pretrained=
|
| 5 |
+
'pretrained/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='ResNetV1cCustomInitWeights',
|
| 8 |
+
depth=101,
|
| 9 |
+
num_stages=4,
|
| 10 |
+
out_indices=(0, 1, 2, 3),
|
| 11 |
+
dilations=(1, 1, 2, 4),
|
| 12 |
+
strides=(1, 2, 1, 1),
|
| 13 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
| 14 |
+
norm_eval=False,
|
| 15 |
+
style='pytorch',
|
| 16 |
+
contract_dilation=True),
|
| 17 |
+
decode_head=dict(
|
| 18 |
+
type='DepthwiseSeparableASPPHeadUnetFCHeadSingleStep',
|
| 19 |
+
pretrained=
|
| 20 |
+
'pretrained/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth',
|
| 21 |
+
dim=256,
|
| 22 |
+
out_dim=256,
|
| 23 |
+
unet_channels=528,
|
| 24 |
+
dim_mults=[1, 1, 1],
|
| 25 |
+
cat_embedding_dim=16,
|
| 26 |
+
ignore_index=0,
|
| 27 |
+
in_channels=2048,
|
| 28 |
+
in_index=3,
|
| 29 |
+
channels=512,
|
| 30 |
+
dilations=(1, 12, 24, 36),
|
| 31 |
+
c1_in_channels=256,
|
| 32 |
+
c1_channels=48,
|
| 33 |
+
dropout_ratio=0.1,
|
| 34 |
+
num_classes=20,
|
| 35 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
| 36 |
+
align_corners=False,
|
| 37 |
+
loss_decode=dict(
|
| 38 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
| 39 |
+
auxiliary_head=None,
|
| 40 |
+
train_cfg=dict(),
|
| 41 |
+
test_cfg=dict(mode='whole'),
|
| 42 |
+
freeze_parameters=['backbone', 'decode_head'])
|
| 43 |
+
dataset_type = 'Cityscapes20Dataset'
|
| 44 |
+
data_root = 'data/cityscapes/'
|
| 45 |
+
img_norm_cfg = dict(
|
| 46 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
| 47 |
+
crop_size = (512, 1024)
|
| 48 |
+
train_pipeline = [
|
| 49 |
+
dict(type='LoadImageFromFile'),
|
| 50 |
+
dict(type='LoadAnnotationsCityscapes20'),
|
| 51 |
+
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
| 52 |
+
dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),
|
| 53 |
+
dict(type='RandomFlip', prob=0.5),
|
| 54 |
+
dict(type='PhotoMetricDistortion'),
|
| 55 |
+
dict(
|
| 56 |
+
type='Normalize',
|
| 57 |
+
mean=[123.675, 116.28, 103.53],
|
| 58 |
+
std=[58.395, 57.12, 57.375],
|
| 59 |
+
to_rgb=True),
|
| 60 |
+
dict(type='Pad', size=(512, 1024), pad_val=0, seg_pad_val=0),
|
| 61 |
+
dict(type='DefaultFormatBundle'),
|
| 62 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
| 63 |
+
]
|
| 64 |
+
test_pipeline = [
|
| 65 |
+
dict(type='LoadImageFromFile'),
|
| 66 |
+
dict(
|
| 67 |
+
type='MultiScaleFlipAug',
|
| 68 |
+
img_scale=(2048, 1024),
|
| 69 |
+
flip=False,
|
| 70 |
+
transforms=[
|
| 71 |
+
dict(type='Resize', keep_ratio=True),
|
| 72 |
+
dict(type='RandomFlip'),
|
| 73 |
+
dict(
|
| 74 |
+
type='Normalize',
|
| 75 |
+
mean=[123.675, 116.28, 103.53],
|
| 76 |
+
std=[58.395, 57.12, 57.375],
|
| 77 |
+
to_rgb=True),
|
| 78 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 79 |
+
dict(type='Collect', keys=['img'])
|
| 80 |
+
])
|
| 81 |
+
]
|
| 82 |
+
data = dict(
|
| 83 |
+
samples_per_gpu=2,
|
| 84 |
+
workers_per_gpu=2,
|
| 85 |
+
train=dict(
|
| 86 |
+
type='Cityscapes20Dataset',
|
| 87 |
+
data_root='data/cityscapes/',
|
| 88 |
+
img_dir='leftImg8bit/train',
|
| 89 |
+
ann_dir='gtFine/train',
|
| 90 |
+
pipeline=[
|
| 91 |
+
dict(type='LoadImageFromFile'),
|
| 92 |
+
dict(type='LoadAnnotationsCityscapes20'),
|
| 93 |
+
dict(
|
| 94 |
+
type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
| 95 |
+
dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),
|
| 96 |
+
dict(type='RandomFlip', prob=0.5),
|
| 97 |
+
dict(type='PhotoMetricDistortion'),
|
| 98 |
+
dict(
|
| 99 |
+
type='Normalize',
|
| 100 |
+
mean=[123.675, 116.28, 103.53],
|
| 101 |
+
std=[58.395, 57.12, 57.375],
|
| 102 |
+
to_rgb=True),
|
| 103 |
+
dict(type='Pad', size=(512, 1024), pad_val=0, seg_pad_val=0),
|
| 104 |
+
dict(type='DefaultFormatBundle'),
|
| 105 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
| 106 |
+
]),
|
| 107 |
+
val=dict(
|
| 108 |
+
type='Cityscapes20Dataset',
|
| 109 |
+
data_root='data/cityscapes/',
|
| 110 |
+
img_dir='leftImg8bit/val',
|
| 111 |
+
ann_dir='gtFine/val',
|
| 112 |
+
pipeline=[
|
| 113 |
+
dict(type='LoadImageFromFile'),
|
| 114 |
+
dict(
|
| 115 |
+
type='MultiScaleFlipAug',
|
| 116 |
+
img_scale=(2048, 1024),
|
| 117 |
+
flip=False,
|
| 118 |
+
transforms=[
|
| 119 |
+
dict(type='Resize', keep_ratio=True),
|
| 120 |
+
dict(type='RandomFlip'),
|
| 121 |
+
dict(
|
| 122 |
+
type='Normalize',
|
| 123 |
+
mean=[123.675, 116.28, 103.53],
|
| 124 |
+
std=[58.395, 57.12, 57.375],
|
| 125 |
+
to_rgb=True),
|
| 126 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 127 |
+
dict(type='Collect', keys=['img'])
|
| 128 |
+
])
|
| 129 |
+
]),
|
| 130 |
+
test=dict(
|
| 131 |
+
type='Cityscapes20Dataset',
|
| 132 |
+
data_root='data/cityscapes/',
|
| 133 |
+
img_dir='leftImg8bit/val',
|
| 134 |
+
ann_dir='gtFine/val',
|
| 135 |
+
pipeline=[
|
| 136 |
+
dict(type='LoadImageFromFile'),
|
| 137 |
+
dict(
|
| 138 |
+
type='MultiScaleFlipAug',
|
| 139 |
+
img_scale=(2048, 1024),
|
| 140 |
+
flip=False,
|
| 141 |
+
transforms=[
|
| 142 |
+
dict(type='Resize', keep_ratio=True),
|
| 143 |
+
dict(type='RandomFlip'),
|
| 144 |
+
dict(
|
| 145 |
+
type='Normalize',
|
| 146 |
+
mean=[123.675, 116.28, 103.53],
|
| 147 |
+
std=[58.395, 57.12, 57.375],
|
| 148 |
+
to_rgb=True),
|
| 149 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 150 |
+
dict(type='Collect', keys=['img'])
|
| 151 |
+
])
|
| 152 |
+
]))
|
| 153 |
+
log_config = dict(
|
| 154 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
| 155 |
+
dist_params = dict(backend='nccl')
|
| 156 |
+
log_level = 'INFO'
|
| 157 |
+
load_from = None
|
| 158 |
+
resume_from = None
|
| 159 |
+
workflow = [('train', 1)]
|
| 160 |
+
cudnn_benchmark = True
|
| 161 |
+
optimizer = dict(
|
| 162 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
| 163 |
+
optimizer_config = dict()
|
| 164 |
+
lr_config = dict(
|
| 165 |
+
policy='step',
|
| 166 |
+
warmup='linear',
|
| 167 |
+
warmup_iters=1000,
|
| 168 |
+
warmup_ratio=1e-06,
|
| 169 |
+
step=10000,
|
| 170 |
+
gamma=0.5,
|
| 171 |
+
min_lr=1e-06,
|
| 172 |
+
by_epoch=False)
|
| 173 |
+
runner = dict(type='IterBasedRunner', max_iters=80000)
|
| 174 |
+
checkpoint_config = dict(by_epoch=False, interval=8000, max_keep_ckpts=1)
|
| 175 |
+
evaluation = dict(
|
| 176 |
+
interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
| 177 |
+
checkpoint = 'pretrained/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth'
|
| 178 |
+
work_dir = './work_dirs2/deeplabv3plus_r101-d8_aspp_head_unet_fc_small_single_step_cityscapes_pretrained_freeze_embed_80k_cityscapes20'
|
| 179 |
+
gpu_ids = range(0, 8)
|
| 180 |
+
auto_resume = True
|
cityscapes/deeplabv3plus_r101_singlestep/iter_80000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4943fa91e507e7d1b5e8bd0e3fbff5589b6b8def3dc7f5aa7e9082c82810aaca
|
| 3 |
+
size 770176920
|
cityscapes/deeplabv3plus_r101_singlestep/latest.pth
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
iter_80000.pth
|
cityscapes/deeplabv3plus_r50_multistep/20230303_205044.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
cityscapes/deeplabv3plus_r50_multistep/20230303_205044.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
cityscapes/deeplabv3plus_r50_multistep/best_mIoU_iter_96000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f2f5b869e270b4b53794616b43c02c479d797d005f43af09e3b0c112e86ea77d
|
| 3 |
+
size 537720523
|
cityscapes/deeplabv3plus_r50_multistep/deeplabv3plus_r50-d8_aspp_head_unet_fc_multi_step_ade_pretrained_freeze_embed_160k_cityscapes20_finetune.py
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
| 2 |
+
model = dict(
|
| 3 |
+
type='EncoderDecoderDiffusion',
|
| 4 |
+
pretrained=
|
| 5 |
+
'work_dirs2/deeplabv3plus_r50-d8_aspp_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_cityscapes20/best_mIoU_iter_72000.pth',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='ResNetV1cCustomInitWeights',
|
| 8 |
+
depth=50,
|
| 9 |
+
num_stages=4,
|
| 10 |
+
out_indices=(0, 1, 2, 3),
|
| 11 |
+
dilations=(1, 1, 2, 4),
|
| 12 |
+
strides=(1, 2, 1, 1),
|
| 13 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
| 14 |
+
norm_eval=False,
|
| 15 |
+
style='pytorch',
|
| 16 |
+
contract_dilation=True),
|
| 17 |
+
decode_head=dict(
|
| 18 |
+
type='DepthwiseSeparableASPPHeadUnetFCHeadMultiStep',
|
| 19 |
+
pretrained=
|
| 20 |
+
'work_dirs2/deeplabv3plus_r50-d8_aspp_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_cityscapes20/best_mIoU_iter_72000.pth',
|
| 21 |
+
dim=128,
|
| 22 |
+
out_dim=256,
|
| 23 |
+
unet_channels=528,
|
| 24 |
+
dim_mults=[1, 1, 1],
|
| 25 |
+
cat_embedding_dim=16,
|
| 26 |
+
ignore_index=0,
|
| 27 |
+
diffusion_timesteps=100,
|
| 28 |
+
collect_timesteps=[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 99],
|
| 29 |
+
in_channels=2048,
|
| 30 |
+
in_index=3,
|
| 31 |
+
channels=512,
|
| 32 |
+
dilations=(1, 12, 24, 36),
|
| 33 |
+
c1_in_channels=256,
|
| 34 |
+
c1_channels=48,
|
| 35 |
+
dropout_ratio=0.1,
|
| 36 |
+
num_classes=20,
|
| 37 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
| 38 |
+
align_corners=False,
|
| 39 |
+
loss_decode=dict(
|
| 40 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
| 41 |
+
auxiliary_head=None,
|
| 42 |
+
train_cfg=dict(),
|
| 43 |
+
test_cfg=dict(mode='whole'),
|
| 44 |
+
freeze_parameters=['backbone', 'decode_head'])
|
| 45 |
+
dataset_type = 'Cityscapes20Dataset'
|
| 46 |
+
data_root = 'data/cityscapes/'
|
| 47 |
+
img_norm_cfg = dict(
|
| 48 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
| 49 |
+
crop_size = (512, 1024)
|
| 50 |
+
train_pipeline = [
|
| 51 |
+
dict(type='LoadImageFromFile'),
|
| 52 |
+
dict(type='LoadAnnotationsCityscapes20'),
|
| 53 |
+
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
| 54 |
+
dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),
|
| 55 |
+
dict(type='RandomFlip', prob=0.5),
|
| 56 |
+
dict(type='PhotoMetricDistortion'),
|
| 57 |
+
dict(
|
| 58 |
+
type='Normalize',
|
| 59 |
+
mean=[123.675, 116.28, 103.53],
|
| 60 |
+
std=[58.395, 57.12, 57.375],
|
| 61 |
+
to_rgb=True),
|
| 62 |
+
dict(type='Pad', size=(512, 1024), pad_val=0, seg_pad_val=0),
|
| 63 |
+
dict(type='DefaultFormatBundle'),
|
| 64 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
| 65 |
+
]
|
| 66 |
+
test_pipeline = [
|
| 67 |
+
dict(type='LoadImageFromFile'),
|
| 68 |
+
dict(
|
| 69 |
+
type='MultiScaleFlipAug',
|
| 70 |
+
img_scale=(2048, 1024),
|
| 71 |
+
flip=False,
|
| 72 |
+
transforms=[
|
| 73 |
+
dict(type='Resize', keep_ratio=True),
|
| 74 |
+
dict(type='RandomFlip'),
|
| 75 |
+
dict(
|
| 76 |
+
type='Normalize',
|
| 77 |
+
mean=[123.675, 116.28, 103.53],
|
| 78 |
+
std=[58.395, 57.12, 57.375],
|
| 79 |
+
to_rgb=True),
|
| 80 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 81 |
+
dict(type='Collect', keys=['img'])
|
| 82 |
+
])
|
| 83 |
+
]
|
| 84 |
+
data = dict(
|
| 85 |
+
samples_per_gpu=2,
|
| 86 |
+
workers_per_gpu=2,
|
| 87 |
+
train=dict(
|
| 88 |
+
type='Cityscapes20Dataset',
|
| 89 |
+
data_root='data/cityscapes/',
|
| 90 |
+
img_dir='leftImg8bit/train',
|
| 91 |
+
ann_dir='gtFine/train',
|
| 92 |
+
pipeline=[
|
| 93 |
+
dict(type='LoadImageFromFile'),
|
| 94 |
+
dict(type='LoadAnnotationsCityscapes20'),
|
| 95 |
+
dict(
|
| 96 |
+
type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
| 97 |
+
dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),
|
| 98 |
+
dict(type='RandomFlip', prob=0.5),
|
| 99 |
+
dict(type='PhotoMetricDistortion'),
|
| 100 |
+
dict(
|
| 101 |
+
type='Normalize',
|
| 102 |
+
mean=[123.675, 116.28, 103.53],
|
| 103 |
+
std=[58.395, 57.12, 57.375],
|
| 104 |
+
to_rgb=True),
|
| 105 |
+
dict(type='Pad', size=(512, 1024), pad_val=0, seg_pad_val=0),
|
| 106 |
+
dict(type='DefaultFormatBundle'),
|
| 107 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
| 108 |
+
]),
|
| 109 |
+
val=dict(
|
| 110 |
+
type='Cityscapes20Dataset',
|
| 111 |
+
data_root='data/cityscapes/',
|
| 112 |
+
img_dir='leftImg8bit/val',
|
| 113 |
+
ann_dir='gtFine/val',
|
| 114 |
+
pipeline=[
|
| 115 |
+
dict(type='LoadImageFromFile'),
|
| 116 |
+
dict(
|
| 117 |
+
type='MultiScaleFlipAug',
|
| 118 |
+
img_scale=(2048, 1024),
|
| 119 |
+
flip=False,
|
| 120 |
+
transforms=[
|
| 121 |
+
dict(type='Resize', keep_ratio=True),
|
| 122 |
+
dict(type='RandomFlip'),
|
| 123 |
+
dict(
|
| 124 |
+
type='Normalize',
|
| 125 |
+
mean=[123.675, 116.28, 103.53],
|
| 126 |
+
std=[58.395, 57.12, 57.375],
|
| 127 |
+
to_rgb=True),
|
| 128 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 129 |
+
dict(type='Collect', keys=['img'])
|
| 130 |
+
])
|
| 131 |
+
]),
|
| 132 |
+
test=dict(
|
| 133 |
+
type='Cityscapes20Dataset',
|
| 134 |
+
data_root='data/cityscapes/',
|
| 135 |
+
img_dir='leftImg8bit/val',
|
| 136 |
+
ann_dir='gtFine/val',
|
| 137 |
+
pipeline=[
|
| 138 |
+
dict(type='LoadImageFromFile'),
|
| 139 |
+
dict(
|
| 140 |
+
type='MultiScaleFlipAug',
|
| 141 |
+
img_scale=(2048, 1024),
|
| 142 |
+
flip=False,
|
| 143 |
+
transforms=[
|
| 144 |
+
dict(type='Resize', keep_ratio=True),
|
| 145 |
+
dict(type='RandomFlip'),
|
| 146 |
+
dict(
|
| 147 |
+
type='Normalize',
|
| 148 |
+
mean=[123.675, 116.28, 103.53],
|
| 149 |
+
std=[58.395, 57.12, 57.375],
|
| 150 |
+
to_rgb=True),
|
| 151 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 152 |
+
dict(type='Collect', keys=['img'])
|
| 153 |
+
])
|
| 154 |
+
]))
|
| 155 |
+
log_config = dict(
|
| 156 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
| 157 |
+
dist_params = dict(backend='nccl')
|
| 158 |
+
log_level = 'INFO'
|
| 159 |
+
load_from = None
|
| 160 |
+
resume_from = None
|
| 161 |
+
workflow = [('train', 1)]
|
| 162 |
+
cudnn_benchmark = True
|
| 163 |
+
optimizer = dict(
|
| 164 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
| 165 |
+
optimizer_config = dict()
|
| 166 |
+
lr_config = dict(
|
| 167 |
+
policy='step',
|
| 168 |
+
warmup='linear',
|
| 169 |
+
warmup_iters=1000,
|
| 170 |
+
warmup_ratio=1e-06,
|
| 171 |
+
step=20000,
|
| 172 |
+
gamma=0.5,
|
| 173 |
+
min_lr=1e-06,
|
| 174 |
+
by_epoch=False)
|
| 175 |
+
runner = dict(type='IterBasedRunner', max_iters=160000)
|
| 176 |
+
checkpoint_config = dict(by_epoch=False, interval=16000, max_keep_ckpts=1)
|
| 177 |
+
evaluation = dict(
|
| 178 |
+
interval=16000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
| 179 |
+
checkpoint = 'work_dirs2/deeplabv3plus_r50-d8_aspp_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_cityscapes20/best_mIoU_iter_72000.pth'
|
| 180 |
+
custom_hooks = [
|
| 181 |
+
dict(
|
| 182 |
+
type='ConstantMomentumEMAHook',
|
| 183 |
+
momentum=0.01,
|
| 184 |
+
interval=25,
|
| 185 |
+
eval_interval=16000,
|
| 186 |
+
auto_resume=True,
|
| 187 |
+
priority=49)
|
| 188 |
+
]
|
| 189 |
+
work_dir = './work_dirs2/deeplabv3plus_r50-d8_aspp_head_unet_fc_multi_step_ade_pretrained_freeze_embed_160k_cityscapes20_finetune'
|
| 190 |
+
gpu_ids = range(0, 8)
|
| 191 |
+
auto_resume = True
|
cityscapes/deeplabv3plus_r50_multistep/iter_160000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b2068deabba26a54a4425374b2188984ce6ac4c2149ebae9281ab1537d5581c5
|
| 3 |
+
size 537720523
|
cityscapes/deeplabv3plus_r50_multistep/latest.pth
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
iter_160000.pth
|
cityscapes/deeplabv3plus_r50_singlestep/20230303_152127.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
cityscapes/deeplabv3plus_r50_singlestep/20230303_152127.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
cityscapes/deeplabv3plus_r50_singlestep/best_mIoU_iter_72000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:656a1fbb967cba4bc26173252f63e3742f066481dc3a5c40cf23a4f5710b03d0
|
| 3 |
+
size 320658122
|
cityscapes/deeplabv3plus_r50_singlestep/deeplabv3plus_r50-d8_aspp_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_cityscapes20.py
ADDED
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
| 2 |
+
model = dict(
|
| 3 |
+
type='EncoderDecoderFreeze',
|
| 4 |
+
pretrained=
|
| 5 |
+
'pretrained/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth',
|
| 6 |
+
backbone=dict(
|
| 7 |
+
type='ResNetV1cCustomInitWeights',
|
| 8 |
+
depth=50,
|
| 9 |
+
num_stages=4,
|
| 10 |
+
out_indices=(0, 1, 2, 3),
|
| 11 |
+
dilations=(1, 1, 2, 4),
|
| 12 |
+
strides=(1, 2, 1, 1),
|
| 13 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
| 14 |
+
norm_eval=False,
|
| 15 |
+
style='pytorch',
|
| 16 |
+
contract_dilation=True),
|
| 17 |
+
decode_head=dict(
|
| 18 |
+
type='DepthwiseSeparableASPPHeadUnetFCHeadSingleStep',
|
| 19 |
+
pretrained=
|
| 20 |
+
'pretrained/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth',
|
| 21 |
+
dim=128,
|
| 22 |
+
out_dim=256,
|
| 23 |
+
unet_channels=528,
|
| 24 |
+
dim_mults=[1, 1, 1],
|
| 25 |
+
cat_embedding_dim=16,
|
| 26 |
+
ignore_index=0,
|
| 27 |
+
in_channels=2048,
|
| 28 |
+
in_index=3,
|
| 29 |
+
channels=512,
|
| 30 |
+
dilations=(1, 12, 24, 36),
|
| 31 |
+
c1_in_channels=256,
|
| 32 |
+
c1_channels=48,
|
| 33 |
+
dropout_ratio=0.1,
|
| 34 |
+
num_classes=20,
|
| 35 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
| 36 |
+
align_corners=False,
|
| 37 |
+
loss_decode=dict(
|
| 38 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
| 39 |
+
auxiliary_head=None,
|
| 40 |
+
train_cfg=dict(),
|
| 41 |
+
test_cfg=dict(mode='whole'),
|
| 42 |
+
freeze_parameters=['backbone', 'decode_head'])
|
| 43 |
+
dataset_type = 'Cityscapes20Dataset'
|
| 44 |
+
data_root = 'data/cityscapes/'
|
| 45 |
+
img_norm_cfg = dict(
|
| 46 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
| 47 |
+
crop_size = (512, 1024)
|
| 48 |
+
train_pipeline = [
|
| 49 |
+
dict(type='LoadImageFromFile'),
|
| 50 |
+
dict(type='LoadAnnotationsCityscapes20'),
|
| 51 |
+
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
| 52 |
+
dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),
|
| 53 |
+
dict(type='RandomFlip', prob=0.5),
|
| 54 |
+
dict(type='PhotoMetricDistortion'),
|
| 55 |
+
dict(
|
| 56 |
+
type='Normalize',
|
| 57 |
+
mean=[123.675, 116.28, 103.53],
|
| 58 |
+
std=[58.395, 57.12, 57.375],
|
| 59 |
+
to_rgb=True),
|
| 60 |
+
dict(type='Pad', size=(512, 1024), pad_val=0, seg_pad_val=0),
|
| 61 |
+
dict(type='DefaultFormatBundle'),
|
| 62 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
| 63 |
+
]
|
| 64 |
+
test_pipeline = [
|
| 65 |
+
dict(type='LoadImageFromFile'),
|
| 66 |
+
dict(
|
| 67 |
+
type='MultiScaleFlipAug',
|
| 68 |
+
img_scale=(2048, 1024),
|
| 69 |
+
flip=False,
|
| 70 |
+
transforms=[
|
| 71 |
+
dict(type='Resize', keep_ratio=True),
|
| 72 |
+
dict(type='RandomFlip'),
|
| 73 |
+
dict(
|
| 74 |
+
type='Normalize',
|
| 75 |
+
mean=[123.675, 116.28, 103.53],
|
| 76 |
+
std=[58.395, 57.12, 57.375],
|
| 77 |
+
to_rgb=True),
|
| 78 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 79 |
+
dict(type='Collect', keys=['img'])
|
| 80 |
+
])
|
| 81 |
+
]
|
| 82 |
+
data = dict(
|
| 83 |
+
samples_per_gpu=2,
|
| 84 |
+
workers_per_gpu=2,
|
| 85 |
+
train=dict(
|
| 86 |
+
type='Cityscapes20Dataset',
|
| 87 |
+
data_root='data/cityscapes/',
|
| 88 |
+
img_dir='leftImg8bit/train',
|
| 89 |
+
ann_dir='gtFine/train',
|
| 90 |
+
pipeline=[
|
| 91 |
+
dict(type='LoadImageFromFile'),
|
| 92 |
+
dict(type='LoadAnnotationsCityscapes20'),
|
| 93 |
+
dict(
|
| 94 |
+
type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
| 95 |
+
dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),
|
| 96 |
+
dict(type='RandomFlip', prob=0.5),
|
| 97 |
+
dict(type='PhotoMetricDistortion'),
|
| 98 |
+
dict(
|
| 99 |
+
type='Normalize',
|
| 100 |
+
mean=[123.675, 116.28, 103.53],
|
| 101 |
+
std=[58.395, 57.12, 57.375],
|
| 102 |
+
to_rgb=True),
|
| 103 |
+
dict(type='Pad', size=(512, 1024), pad_val=0, seg_pad_val=0),
|
| 104 |
+
dict(type='DefaultFormatBundle'),
|
| 105 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
| 106 |
+
]),
|
| 107 |
+
val=dict(
|
| 108 |
+
type='Cityscapes20Dataset',
|
| 109 |
+
data_root='data/cityscapes/',
|
| 110 |
+
img_dir='leftImg8bit/val',
|
| 111 |
+
ann_dir='gtFine/val',
|
| 112 |
+
pipeline=[
|
| 113 |
+
dict(type='LoadImageFromFile'),
|
| 114 |
+
dict(
|
| 115 |
+
type='MultiScaleFlipAug',
|
| 116 |
+
img_scale=(2048, 1024),
|
| 117 |
+
flip=False,
|
| 118 |
+
transforms=[
|
| 119 |
+
dict(type='Resize', keep_ratio=True),
|
| 120 |
+
dict(type='RandomFlip'),
|
| 121 |
+
dict(
|
| 122 |
+
type='Normalize',
|
| 123 |
+
mean=[123.675, 116.28, 103.53],
|
| 124 |
+
std=[58.395, 57.12, 57.375],
|
| 125 |
+
to_rgb=True),
|
| 126 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 127 |
+
dict(type='Collect', keys=['img'])
|
| 128 |
+
])
|
| 129 |
+
]),
|
| 130 |
+
test=dict(
|
| 131 |
+
type='Cityscapes20Dataset',
|
| 132 |
+
data_root='data/cityscapes/',
|
| 133 |
+
img_dir='leftImg8bit/val',
|
| 134 |
+
ann_dir='gtFine/val',
|
| 135 |
+
pipeline=[
|
| 136 |
+
dict(type='LoadImageFromFile'),
|
| 137 |
+
dict(
|
| 138 |
+
type='MultiScaleFlipAug',
|
| 139 |
+
img_scale=(2048, 1024),
|
| 140 |
+
flip=False,
|
| 141 |
+
transforms=[
|
| 142 |
+
dict(type='Resize', keep_ratio=True),
|
| 143 |
+
dict(type='RandomFlip'),
|
| 144 |
+
dict(
|
| 145 |
+
type='Normalize',
|
| 146 |
+
mean=[123.675, 116.28, 103.53],
|
| 147 |
+
std=[58.395, 57.12, 57.375],
|
| 148 |
+
to_rgb=True),
|
| 149 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 150 |
+
dict(type='Collect', keys=['img'])
|
| 151 |
+
])
|
| 152 |
+
]))
|
| 153 |
+
log_config = dict(
|
| 154 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
| 155 |
+
dist_params = dict(backend='nccl')
|
| 156 |
+
log_level = 'INFO'
|
| 157 |
+
load_from = None
|
| 158 |
+
resume_from = None
|
| 159 |
+
workflow = [('train', 1)]
|
| 160 |
+
cudnn_benchmark = True
|
| 161 |
+
optimizer = dict(
|
| 162 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
| 163 |
+
optimizer_config = dict()
|
| 164 |
+
lr_config = dict(
|
| 165 |
+
policy='step',
|
| 166 |
+
warmup='linear',
|
| 167 |
+
warmup_iters=1000,
|
| 168 |
+
warmup_ratio=1e-06,
|
| 169 |
+
step=10000,
|
| 170 |
+
gamma=0.5,
|
| 171 |
+
min_lr=1e-06,
|
| 172 |
+
by_epoch=False)
|
| 173 |
+
runner = dict(type='IterBasedRunner', max_iters=80000)
|
| 174 |
+
checkpoint_config = dict(by_epoch=False, interval=8000, max_keep_ckpts=1)
|
| 175 |
+
evaluation = dict(
|
| 176 |
+
interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
| 177 |
+
checkpoint = 'pretrained/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth'
|
| 178 |
+
work_dir = './work_dirs2/deeplabv3plus_r50-d8_aspp_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_cityscapes20'
|
| 179 |
+
gpu_ids = range(0, 8)
|
| 180 |
+
auto_resume = True
|
cityscapes/deeplabv3plus_r50_singlestep/iter_80000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8e66df1694c48dc327a6e88e46e35b8a71fc3a704f3ed6bd505732c67a32993f
|
| 3 |
+
size 320658122
|
cityscapes/deeplabv3plus_r50_singlestep/latest.pth
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
iter_80000.pth
|
cityscapes/segformer_b0_multistep/best_mIoU_iter_144000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:81934dd4754a76e7987d1a88515322bfe16f01050a943e2fc4d28565dedf32af
|
| 3 |
+
size 211300107
|
cityscapes/segformer_b0_multistep/segformer_mit_b0_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_cityscapes20_finetune_cfg.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_base_ = [
|
| 2 |
+
'../_base_/models/segformer_mit-b2_segformer_head_unet_fc.py',
|
| 3 |
+
'../_base_/datasets/cityscapes20_1024x1024.py',
|
| 4 |
+
'../_base_/default_runtime.py',
|
| 5 |
+
'../_base_/schedules/schedule_160k.py'
|
| 6 |
+
|
| 7 |
+
]
|
| 8 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
| 9 |
+
checkpoint = 'work_dirs/segformer_mit_b0_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_cityscapes20/best_mIoU_iter_48000.pth'
|
| 10 |
+
# model settings
|
| 11 |
+
model = dict(
|
| 12 |
+
type='EncoderDecoderDiffusion',
|
| 13 |
+
freeze_parameters=['backbone', 'decode_head'],
|
| 14 |
+
pretrained=checkpoint,
|
| 15 |
+
backbone=dict(
|
| 16 |
+
type='MixVisionTransformerCustomInitWeights',
|
| 17 |
+
embed_dims=32,
|
| 18 |
+
num_layers=[2, 2, 2, 2],
|
| 19 |
+
num_heads=[1, 2, 5, 8],
|
| 20 |
+
),
|
| 21 |
+
decode_head=dict(
|
| 22 |
+
_delete_=True,
|
| 23 |
+
type='SegformerHeadUnetFCHeadMultiStep',
|
| 24 |
+
# unet params
|
| 25 |
+
pretrained=checkpoint,
|
| 26 |
+
dim=128,
|
| 27 |
+
out_dim=256,
|
| 28 |
+
unet_channels=272,
|
| 29 |
+
dim_mults=[1,1,1],
|
| 30 |
+
cat_embedding_dim=16,
|
| 31 |
+
diffusion_timesteps=20,
|
| 32 |
+
# collect_timesteps=[19,18,17,16,15,10,5,0],
|
| 33 |
+
collect_timesteps=[i for i in range(20)],
|
| 34 |
+
guidance_scale=1,
|
| 35 |
+
# decode head params
|
| 36 |
+
in_channels=[32, 64, 160, 256],
|
| 37 |
+
in_index=[0, 1, 2, 3],
|
| 38 |
+
channels=256,
|
| 39 |
+
dropout_ratio=0.1,
|
| 40 |
+
num_classes=20,
|
| 41 |
+
norm_cfg=norm_cfg,
|
| 42 |
+
align_corners=False,
|
| 43 |
+
ignore_index=0, # ignore background
|
| 44 |
+
loss_decode=dict(
|
| 45 |
+
type='CrossEntropyLoss',
|
| 46 |
+
use_sigmoid=False,
|
| 47 |
+
loss_weight=1.0)
|
| 48 |
+
)
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
optimizer = dict(_delete_=True, type='AdamW', lr=1.5e-4, betas=[0.9, 0.96], weight_decay=0.045)
|
| 52 |
+
lr_config = dict(_delete_=True, policy='step',
|
| 53 |
+
warmup='linear',
|
| 54 |
+
warmup_iters=1000,
|
| 55 |
+
warmup_ratio=1e-6,
|
| 56 |
+
step=20000, gamma=0.5, min_lr=1.0e-6, by_epoch=False)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
custom_hooks = [dict(
|
| 60 |
+
type='ConstantMomentumEMAHook',
|
| 61 |
+
momentum=0.01,
|
| 62 |
+
interval=25,
|
| 63 |
+
eval_interval=16000,
|
| 64 |
+
auto_resume=True,
|
| 65 |
+
priority=49)
|
| 66 |
+
]
|
| 67 |
+
|
| 68 |
+
# evaluation = dict(interval=100, metric='mIoU', pre_eval=True, save_best='mIoU')
|
cityscapes/segformer_b2_multistep/20230302_232152.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
cityscapes/segformer_b2_multistep/20230302_232152.log.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
cityscapes/segformer_b2_multistep/best_mIoU_iter_128000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f387874491ad3136831359eb3b45cefc276f16d545a536b69f66a06a41e339ec
|
| 3 |
+
size 851427951
|
cityscapes/segformer_b2_multistep/iter_160000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d592e34c78163224116bc7af5bd7f1bdcb67b072e6b9e88655d0ecf97768107d
|
| 3 |
+
size 851427951
|
cityscapes/segformer_b2_multistep/latest.pth
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
iter_160000.pth
|
cityscapes/segformer_b2_multistep/segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_cityscapes20_finetune_ema.py
ADDED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
| 2 |
+
checkpoint = 'work_dirs/segformer_mit_b2_segformer_head_unet_fc_small_single_step_ade_pretrained_freeze_embed_80k_cityscapes20/best_mIoU_iter_64000.pth'
|
| 3 |
+
model = dict(
|
| 4 |
+
type='EncoderDecoderDiffusion',
|
| 5 |
+
freeze_parameters=['backbone', 'decode_head'],
|
| 6 |
+
pretrained=
|
| 7 |
+
'work_dirs/segformer_mit_b2_segformer_head_unet_fc_small_single_step_ade_pretrained_freeze_embed_80k_cityscapes20/best_mIoU_iter_64000.pth',
|
| 8 |
+
backbone=dict(
|
| 9 |
+
type='MixVisionTransformerCustomInitWeights',
|
| 10 |
+
in_channels=3,
|
| 11 |
+
embed_dims=64,
|
| 12 |
+
num_stages=4,
|
| 13 |
+
num_layers=[3, 4, 6, 3],
|
| 14 |
+
num_heads=[1, 2, 5, 8],
|
| 15 |
+
patch_sizes=[7, 3, 3, 3],
|
| 16 |
+
sr_ratios=[8, 4, 2, 1],
|
| 17 |
+
out_indices=(0, 1, 2, 3),
|
| 18 |
+
mlp_ratio=4,
|
| 19 |
+
qkv_bias=True,
|
| 20 |
+
drop_rate=0.0,
|
| 21 |
+
attn_drop_rate=0.0,
|
| 22 |
+
drop_path_rate=0.1),
|
| 23 |
+
decode_head=dict(
|
| 24 |
+
type='SegformerHeadUnetFCHeadMultiStep',
|
| 25 |
+
pretrained=
|
| 26 |
+
'work_dirs/segformer_mit_b2_segformer_head_unet_fc_small_single_step_ade_pretrained_freeze_embed_80k_cityscapes20/best_mIoU_iter_64000.pth',
|
| 27 |
+
dim=256,
|
| 28 |
+
out_dim=256,
|
| 29 |
+
unet_channels=272,
|
| 30 |
+
dim_mults=[1, 1, 1],
|
| 31 |
+
cat_embedding_dim=16,
|
| 32 |
+
diffusion_timesteps=20,
|
| 33 |
+
collect_timesteps=[
|
| 34 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
|
| 35 |
+
19
|
| 36 |
+
],
|
| 37 |
+
in_channels=[64, 128, 320, 512],
|
| 38 |
+
in_index=[0, 1, 2, 3],
|
| 39 |
+
channels=256,
|
| 40 |
+
dropout_ratio=0.1,
|
| 41 |
+
num_classes=20,
|
| 42 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
| 43 |
+
align_corners=False,
|
| 44 |
+
ignore_index=0,
|
| 45 |
+
loss_decode=dict(
|
| 46 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
| 47 |
+
train_cfg=dict(),
|
| 48 |
+
test_cfg=dict(mode='whole'))
|
| 49 |
+
dataset_type = 'Cityscapes20Dataset'
|
| 50 |
+
data_root = 'data/cityscapes/'
|
| 51 |
+
img_norm_cfg = dict(
|
| 52 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
| 53 |
+
crop_size = (1024, 1024)
|
| 54 |
+
train_pipeline = [
|
| 55 |
+
dict(type='LoadImageFromFile'),
|
| 56 |
+
dict(type='LoadAnnotationsCityscapes20'),
|
| 57 |
+
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
| 58 |
+
dict(type='RandomCrop', crop_size=(1024, 1024), cat_max_ratio=0.75),
|
| 59 |
+
dict(type='RandomFlip', prob=0.5),
|
| 60 |
+
dict(type='PhotoMetricDistortion'),
|
| 61 |
+
dict(
|
| 62 |
+
type='Normalize',
|
| 63 |
+
mean=[123.675, 116.28, 103.53],
|
| 64 |
+
std=[58.395, 57.12, 57.375],
|
| 65 |
+
to_rgb=True),
|
| 66 |
+
dict(type='Pad', size=(1024, 1024), pad_val=0, seg_pad_val=0),
|
| 67 |
+
dict(type='DefaultFormatBundle'),
|
| 68 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
| 69 |
+
]
|
| 70 |
+
test_pipeline = [
|
| 71 |
+
dict(type='LoadImageFromFile'),
|
| 72 |
+
dict(
|
| 73 |
+
type='MultiScaleFlipAug',
|
| 74 |
+
img_scale=(2048, 1024),
|
| 75 |
+
flip=False,
|
| 76 |
+
transforms=[
|
| 77 |
+
dict(type='Resize', keep_ratio=True),
|
| 78 |
+
dict(type='RandomFlip'),
|
| 79 |
+
dict(
|
| 80 |
+
type='Normalize',
|
| 81 |
+
mean=[123.675, 116.28, 103.53],
|
| 82 |
+
std=[58.395, 57.12, 57.375],
|
| 83 |
+
to_rgb=True),
|
| 84 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 85 |
+
dict(type='Collect', keys=['img'])
|
| 86 |
+
])
|
| 87 |
+
]
|
| 88 |
+
data = dict(
|
| 89 |
+
samples_per_gpu=2,
|
| 90 |
+
workers_per_gpu=2,
|
| 91 |
+
train=dict(
|
| 92 |
+
type='Cityscapes20Dataset',
|
| 93 |
+
data_root='data/cityscapes/',
|
| 94 |
+
img_dir='leftImg8bit/train',
|
| 95 |
+
ann_dir='gtFine/train',
|
| 96 |
+
pipeline=[
|
| 97 |
+
dict(type='LoadImageFromFile'),
|
| 98 |
+
dict(type='LoadAnnotationsCityscapes20'),
|
| 99 |
+
dict(
|
| 100 |
+
type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
| 101 |
+
dict(
|
| 102 |
+
type='RandomCrop', crop_size=(1024, 1024), cat_max_ratio=0.75),
|
| 103 |
+
dict(type='RandomFlip', prob=0.5),
|
| 104 |
+
dict(type='PhotoMetricDistortion'),
|
| 105 |
+
dict(
|
| 106 |
+
type='Normalize',
|
| 107 |
+
mean=[123.675, 116.28, 103.53],
|
| 108 |
+
std=[58.395, 57.12, 57.375],
|
| 109 |
+
to_rgb=True),
|
| 110 |
+
dict(type='Pad', size=(1024, 1024), pad_val=0, seg_pad_val=0),
|
| 111 |
+
dict(type='DefaultFormatBundle'),
|
| 112 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
| 113 |
+
]),
|
| 114 |
+
val=dict(
|
| 115 |
+
type='Cityscapes20Dataset',
|
| 116 |
+
data_root='data/cityscapes/',
|
| 117 |
+
img_dir='leftImg8bit/val',
|
| 118 |
+
ann_dir='gtFine/val',
|
| 119 |
+
pipeline=[
|
| 120 |
+
dict(type='LoadImageFromFile'),
|
| 121 |
+
dict(
|
| 122 |
+
type='MultiScaleFlipAug',
|
| 123 |
+
img_scale=(2048, 1024),
|
| 124 |
+
flip=False,
|
| 125 |
+
transforms=[
|
| 126 |
+
dict(type='Resize', keep_ratio=True),
|
| 127 |
+
dict(type='RandomFlip'),
|
| 128 |
+
dict(
|
| 129 |
+
type='Normalize',
|
| 130 |
+
mean=[123.675, 116.28, 103.53],
|
| 131 |
+
std=[58.395, 57.12, 57.375],
|
| 132 |
+
to_rgb=True),
|
| 133 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 134 |
+
dict(type='Collect', keys=['img'])
|
| 135 |
+
])
|
| 136 |
+
]),
|
| 137 |
+
test=dict(
|
| 138 |
+
type='Cityscapes20Dataset',
|
| 139 |
+
data_root='data/cityscapes/',
|
| 140 |
+
img_dir='leftImg8bit/val',
|
| 141 |
+
ann_dir='gtFine/val',
|
| 142 |
+
pipeline=[
|
| 143 |
+
dict(type='LoadImageFromFile'),
|
| 144 |
+
dict(
|
| 145 |
+
type='MultiScaleFlipAug',
|
| 146 |
+
img_scale=(2048, 1024),
|
| 147 |
+
flip=False,
|
| 148 |
+
transforms=[
|
| 149 |
+
dict(type='Resize', keep_ratio=True),
|
| 150 |
+
dict(type='RandomFlip'),
|
| 151 |
+
dict(
|
| 152 |
+
type='Normalize',
|
| 153 |
+
mean=[123.675, 116.28, 103.53],
|
| 154 |
+
std=[58.395, 57.12, 57.375],
|
| 155 |
+
to_rgb=True),
|
| 156 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 157 |
+
dict(type='Collect', keys=['img'])
|
| 158 |
+
])
|
| 159 |
+
]))
|
| 160 |
+
log_config = dict(
|
| 161 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
| 162 |
+
dist_params = dict(backend='nccl')
|
| 163 |
+
log_level = 'INFO'
|
| 164 |
+
load_from = None
|
| 165 |
+
resume_from = None
|
| 166 |
+
workflow = [('train', 1)]
|
| 167 |
+
cudnn_benchmark = True
|
| 168 |
+
optimizer = dict(
|
| 169 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
| 170 |
+
optimizer_config = dict()
|
| 171 |
+
lr_config = dict(
|
| 172 |
+
policy='step',
|
| 173 |
+
warmup='linear',
|
| 174 |
+
warmup_iters=1000,
|
| 175 |
+
warmup_ratio=1e-06,
|
| 176 |
+
step=20000,
|
| 177 |
+
gamma=0.5,
|
| 178 |
+
min_lr=1e-06,
|
| 179 |
+
by_epoch=False)
|
| 180 |
+
runner = dict(type='IterBasedRunner', max_iters=160000)
|
| 181 |
+
checkpoint_config = dict(by_epoch=False, interval=16000, max_keep_ckpts=1)
|
| 182 |
+
evaluation = dict(
|
| 183 |
+
interval=16000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
| 184 |
+
custom_hooks = [
|
| 185 |
+
dict(
|
| 186 |
+
type='ConstantMomentumEMAHook',
|
| 187 |
+
momentum=0.01,
|
| 188 |
+
interval=25,
|
| 189 |
+
eval_interval=16000,
|
| 190 |
+
auto_resume=True,
|
| 191 |
+
priority=49)
|
| 192 |
+
]
|
| 193 |
+
work_dir = './work_dirs/segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_cityscapes20_finetune_ema'
|
| 194 |
+
gpu_ids = range(0, 8)
|
| 195 |
+
auto_resume = True
|