Improve model card: Add metadata, links, checkpoints, datasets, and usage example for FarSLIP (#1)
Browse files- Improve model card: Add metadata, links, checkpoints, datasets, and usage example for FarSLIP (b44a381f78a253b78cf4460026734f881eea176a)
Co-authored-by: Niels Rogge <nielsr@users.noreply.huggingface.co>
README.md
CHANGED
|
@@ -1,3 +1,92 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
pipeline_tag: zero-shot-image-classification
|
| 4 |
+
library_name: open_clip
|
| 5 |
+
datasets:
|
| 6 |
+
- ZhenShiL/MGRS-200k
|
| 7 |
+
- omlab/RS5M
|
| 8 |
+
tags:
|
| 9 |
+
- remote-sensing
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
<h1 align="center"> FarSLIP: Discovering Effective CLIP Adaptation for Fine-Grained Remote Sensing Understanding </h1>
|
| 13 |
+
|
| 14 |
+
<p align="center">
|
| 15 |
+
<a href="https://huggingface.co/datasets/ZhenShiL/MGRS-200k">
|
| 16 |
+
<img alt="Hugging Face Dataset" src="https://img.shields.io/badge/🤗%20Hugging%20Face-Dataset-blue">
|
| 17 |
+
</a>
|
| 18 |
+
<a href="https://huggingface.co/ZhenShiL/FarSLIP">
|
| 19 |
+
<img alt="Hugging Face Model" src="https://img.shields.io/badge/🤗%20Hugging%20Face-Model-yellow">
|
| 20 |
+
</a>
|
| 21 |
+
<a href="https://huggingface.co/papers/2511.14901">
|
| 22 |
+
<img alt="Hugging Face Paper" src="https://img.shields.io/badge/%F0%9F%97%92%20Paper-2511.14901-b31b1b">
|
| 23 |
+
</a>
|
| 24 |
+
</p>
|
| 25 |
+
|
| 26 |
+
**Paper**: [FarSLIP: Discovering Effective CLIP Adaptation for Fine-Grained Remote Sensing Understanding](https://huggingface.co/papers/2511.14901)
|
| 27 |
+
**Code**: [https://github.com/NJU-LHRS/FarSLIP](https://github.com/NJU-LHRS/FarSLIP)
|
| 28 |
+
|
| 29 |
+
## Introduction
|
| 30 |
+
We introduce FarSLIP, a vision-language foundation model for remote sensing (RS) that achieves fine-grained vision-language alignment. FarSLIP demonstrates state-of-the-art performance on both fine-grained and image-level tasks, including open-vocabulary semantic segmentation, zero-shot classification, and image-text retrieval.
|
| 31 |
+
We also construct MGRS-200k, the first multi-granularity image-text dataset for RS. Each image is annotated with both short and long global-level captions, along with multiple object-category pairs.
|
| 32 |
+
|
| 33 |
+
<figure>
|
| 34 |
+
<div align="center">
|
| 35 |
+
<img src="https://github.com/NJU-LHRS/FarSLIP/raw/main/assets/model.png" width="60%">
|
| 36 |
+
</div>
|
| 37 |
+
</figure>
|
| 38 |
+
|
| 39 |
+
## Checkpoints
|
| 40 |
+
You can download all our checkpoints from [Huggingface](https://huggingface.co/ZhenShiL/FarSLIP), or selectively download them through the links below.
|
| 41 |
+
|
| 42 |
+
| Model name | Architecture | OVSS mIoU (%) | ZSC top-1 accuracy (%) | Download |
|
| 43 |
+
|-------------|--------------|---------------|-------------------------|----------------|
|
| 44 |
+
| FarSLIP-s1 | ViT-B-32 | 29.87 | 58.64 | [FarSLIP1_ViT-B-32](https://huggingface.co/ZhenShiL/FarSLIP/resolve/main/FarSLIP1_ViT-B-32.pt?download=true) |
|
| 45 |
+
| FarSLIP-s2 | ViT-B-32 | 30.49 | 60.12 | [FarSLIP2_ViT-B-32](https://huggingface.co/ZhenShiL/FarSLIP/resolve/main/FarSLIP2_ViT-B-32.pt?download=true) |
|
| 46 |
+
| FarSLIP-s1 | ViT-B-16 | 35.44 | 61.89 | [FarSLIP1_ViT-B-16](https://huggingface.co/ZhenShiL/FarSLIP/resolve/main/FarSLIP1_ViT-B-16.pt?download=true) |
|
| 47 |
+
| FarSLIP-s2 | ViT-B-16 | 35.41 | 62.24 | [FarSLIP2_ViT-B-16](https://huggingface.co/ZhenShiL/FarSLIP/resolve/main/FarSLIP2_ViT-B-16.pt?download=true) |
|
| 48 |
+
|
| 49 |
+
## Dataset
|
| 50 |
+
FarSLIP is trained in two stages.
|
| 51 |
+
+ In the first stage, we use the [RS5M](https://github.com/om-ai-lab/RS5M) dataset. A quick portal to the RS5M dataset: [link](https://huggingface.co/datasets/omlab/RS5M).
|
| 52 |
+
+ In the second stage, we use the proposed MGRS-200k dataset, which is available on [Huggingface](https://huggingface.co/datasets/ZhenShiL/MGRS-200k).
|
| 53 |
+
|
| 54 |
+
<p align="center">
|
| 55 |
+
<img src="https://github.com/NJU-LHRS/FarSLIP/raw/main/assets/dataset.png" width="100%">
|
| 56 |
+
<br>
|
| 57 |
+
<em>Examples from MGRS-200k</em>
|
| 58 |
+
</p>
|
| 59 |
+
|
| 60 |
+
## Usage / Testing
|
| 61 |
+
|
| 62 |
+
Below is a sample usage for zero-shot scene classification, taken directly from the [official GitHub repository](https://github.com/NJU-LHRS/FarSLIP#zero-shot-scene-classification).
|
| 63 |
+
|
| 64 |
+
### Zero-shot scene classification
|
| 65 |
+
+ Please refer to [SkyScript](https://github.com/wangzhecheng/SkyScript?tab=readme-ov-file#download-benchmark-datasets) for scene classification dataset preparation, including 'SkyScript_cls', 'aid', 'eurosat', 'fmow', 'millionaid', 'patternnet', 'rsicb', 'nwpu'.
|
| 66 |
+
+ Replace the `BENCHMARK_DATASET_ROOT_DIR` in `tests/test_scene_classification.py` to your own path.
|
| 67 |
+
|
| 68 |
+
+ Run testing (e.g. FarSLIP-s1 with ViT-B-32):
|
| 69 |
+
```
|
| 70 |
+
python -m tests.test_scene_classification --model-arch ViT-B-32 --model-name FarSLIP1 --force-quick-gelu --pretrained checkpoints/FarSLIP1_ViT-B-32.pt
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
<figure>
|
| 74 |
+
<div align="center">
|
| 75 |
+
<img src="https://github.com/NJU-LHRS/FarSLIP/raw/main/assets/classification.png" width="100%">
|
| 76 |
+
</div>
|
| 77 |
+
<figcaption align="center">
|
| 78 |
+
<em>Comparison of zero-shot classification accuracies (Top-1 acc., %) of different RS-specific CLIP variants across multiple benchmarks.</em>
|
| 79 |
+
</figcaption>
|
| 80 |
+
</figure>
|
| 81 |
+
|
| 82 |
+
## Citation
|
| 83 |
+
If you find our work is useful, please give us ⭐ in GitHub and consider cite our paper:
|
| 84 |
+
|
| 85 |
+
```tex
|
| 86 |
+
@article{li2025farslip,
|
| 87 |
+
title={FarSLIP: Discovering Effective CLIP Adaptation for Fine-Grained Remote Sensing Understanding},
|
| 88 |
+
author={Zhenshi Li and Weikang Yu and Dilxat Muhtar and Xueliang Zhang and Pengfeng Xiao and Pedram Ghamisi and Xiao Xiang Zhu},
|
| 89 |
+
journal={arXiv preprint arXiv:2511.14901},
|
| 90 |
+
year={2025}
|
| 91 |
+
}
|
| 92 |
+
```
|