File size: 2,160 Bytes
fb3d9b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: apache-2.0
base_model: EleutherAI/pythia-1.4b
tags:
- generated_from_trainer
- sft
- ultrafeedback
datasets:
- trl-lib/tldr
language:
- en
library_name: transformers
---

# pythia-1.4b Fine-tuned on tldr

This model is a fine-tuned version of [EleutherAI/pythia-1.4b](https://huggingface.co/EleutherAI/pythia-1.4b) on the [trl-lib/tldr](https://huggingface.co/datasets/trl-lib/tldr) dataset.

## Training Results

![Training Loss](loss_plot.png)

### Training Statistics

| Metric | Value |
|--------|-------|
| Total Steps | 1356 |
| Final Training Loss | 147.1650 |
| Min Training Loss | 2.8189 |
| Training Runtime | 347.80 seconds |
| Samples/Second | 249.34 |

## Training Configuration

| Parameter | Value |
|-----------|-------|
| Base Model | EleutherAI/pythia-1.4b |
| Dataset | trl-lib/tldr |
| Number of Epochs | 1.0 |
| Per Device Batch Size | 16 |
| Gradient Accumulation Steps | 1 |
| Total Batch Size | 64 (4 GPUs) |
| Learning Rate | 2e-05 |
| LR Scheduler | cosine |
| Warmup Ratio | 0.1 |
| Max Sequence Length | 512 |
| Optimizer | adamw_torch_fused |
| Mixed Precision | BF16 |

## Usage

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "activeDap/pythia-1.4b_tldr"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Format input with prompt template
prompt = "What is machine learning?\nAssistant:"
inputs = tokenizer(prompt, return_tensors="pt")

# Generate response
outputs = model.generate(**inputs, max_new_tokens=100)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```

## Training Framework

- **Library:** Transformers + TRL
- **Training Type:** Supervised Fine-Tuning (SFT)
- **Format:** Prompt-completion with Assistant-only loss

## Citation

If you use this model, please cite the original base model and dataset:

```bibtex
@misc{ultrafeedback2023,
      title={UltraFeedback: Boosting Language Models with High-quality Feedback},
      author={Ganqu Cui and Lifan Yuan and Ning Ding and others},
      year={2023},
      eprint={2310.01377},
      archivePrefix={arXiv}
}
```