--- language: [en] license: apache-2.0 tags: - gpt2 - physics - ibdp - education - tutor datasets: - custom widget: - text: "Explain Newton’s second law for IB Physics HL." model-index: - name: IB-Physics-Mini-GPT results: [] --- # IB-Physics-Mini-GPT (from-scratch tiny GPT-2) A small GPT-2–style casual LLM trained from scratch on a compact IB Physics HL corpus, then lightly instruction-tuned for short Q&A. Purpose: show end-to-end skill (tokenizer → pretrain → SFT → eval → deploy on a HF Space). **Why small?** Fits student budget. **Why physics?** Narrow domain = good coverage with little data. ## Quickstart ```bash pip install -r requirements.txt # 1) prepare data python train/prepare_corpus.py python train/build_tokenizer.py # 2) pretrain (tiny) python train/pretrain.py # 3) sft python train/sft.py # 4) sample python train/gen_sample.py --prompt "Explain inertia in one sentence." # 5) push to Hugging Face python scripts/push_to_hf.py --repo your-username/ib-physics-mini-gpt ``` ## Demo Space This repo includes a Gradio app (`space_app/app.py`). Create a Hugging Face Space, point it at this folder, set Space SDK=Gradio, Python backend. ## Notes - Educational demo; not for safety-critical use. - Inspired by classic GPT papers and hands-on books/videos.