import os from transformers import pipeline model_path = os.path.join(os.getcwd(), "fine_tuned_werther_model") print(f"Loading fine-tuned model from: {model_path}...") try: generator = pipeline("text-generation", model=model_path) print("Model loaded successfully!") print("\n--- Generating Text (Adjusted Parameters) ---") # Example 1: Lower temperature for less repetition, shorter length prompt1 = "How happy I am that I am gone!" print(f"\nPrompt: '{prompt1}'") generated_text1 = generator( prompt1, max_new_tokens=60, # Shorter output num_return_sequences=1, do_sample=True, temperature=0.6, # Lower temperature top_k=50, top_p=0.9 ) print(f"Generated text: {generated_text1[0]['generated_text']}") # Example 2: Try slightly different values prompt2 = "My soul yearns for" print(f"\nPrompt: '{prompt2}'") generated_text2 = generator( prompt2, max_new_tokens=70, num_return_sequences=1, do_sample=True, temperature=0.7, # Slightly higher than 0.6, lower than 0.9 top_k=40, # Smaller top_k top_p=0.85 # Slightly lower top_p ) print(f"Generated text: {generated_text2[0]['generated_text']}") # Example 3: Experiment with a very low temperature (more deterministic) prompt3 = "The world seemed to me" print(f"\nPrompt: '{prompt3}'") generated_text3 = generator( prompt3, max_new_tokens=80, num_return_sequences=1, do_sample=True, temperature=0.5 # Very low temperature ) print(f"Generated text: {generated_text3[0]['generated_text']}") except Exception as e: print(f"\nAn error occurred during text generation: {e}") print("Please ensure the 'fine_tuned_werther_model' directory exists and contains the model and tokenizer files.")