Turkish Named Entity Recognition (NER) Model
This model is the fine-tuned version of Multilingual ModernBERT model "jhu-clsp/mmBERT-base" using a reviewed version of well known Turkish NER dataset (https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt).
Fine-tuning parameters:
task = "ner"
model_checkpoint = "jhu-clsp/mmBERT-base"
batch_size = 8
label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
max_length = 8192
learning_rate = 2e-5
num_train_epochs = 5
weight_decay = 0.01
How to use:
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
model = AutoModelForTokenClassification.from_pretrained("akdeniz27/mmbert-base-tr-uncased-ner")
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/mmbert-base-tr-uncased-ner")
# tokenizer.model_max_length = 512 # Model max_length could be set here (max 8192 as default)
ner = pipeline("token-classification", model=model, tokenizer=tokenizer, aggregation_strategy="first")
ner("your text here")
Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter.
Reference test results:
- accuracy: 0.991023766617932
- f1: 0.9414858645627877
- precision: 0.9397695785328861
- recall: 0.9432084309133489
- Downloads last month
- 3
Model tree for akdeniz27/mmbert-base-tr-uncased-ner
Base model
jhu-clsp/mmBERT-base