Commit
·
7286926
1
Parent(s):
3c0d2f8
fix handler
Browse files- handler.py +57 -36
handler.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
-
# HANDLER
|
| 2 |
-
import os, io, json, base64
|
| 3 |
from typing import Any, Dict
|
| 4 |
from PIL import Image
|
| 5 |
import torch
|
|
@@ -10,47 +10,53 @@ MODEL_ID = os.getenv("MODEL_ID", "andro-flock/LUSTIFY-SDXL-NSFW-checkpoint-v2-0-
|
|
| 10 |
|
| 11 |
class EndpointHandler:
|
| 12 |
def __init__(self, path: str = "."):
|
| 13 |
-
print("HANDLER
|
| 14 |
-
token = os.getenv("HF_TOKEN")
|
| 15 |
-
# Download repo locally first to avoid variant resolution issues
|
| 16 |
local_dir = snapshot_download(MODEL_ID, token=token)
|
| 17 |
-
print(f"HANDLER
|
| 18 |
|
| 19 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
self.pipe_txt2img = None
|
| 21 |
self.pipe_inpaint = None
|
| 22 |
last_err = None
|
| 23 |
|
| 24 |
-
# Try fp16 → bf16 → fp32
|
| 25 |
for dtype in (torch.float16, torch.bfloat16, torch.float32):
|
| 26 |
try:
|
| 27 |
-
# Try to load txt2img
|
| 28 |
try:
|
| 29 |
-
|
| 30 |
local_dir, torch_dtype=dtype, use_safetensors=True
|
| 31 |
).to(self.device)
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
except Exception as e:
|
| 34 |
self.pipe_txt2img = None
|
| 35 |
-
print(f"HANDLER
|
| 36 |
|
| 37 |
# Load inpaint (required)
|
| 38 |
self.pipe_inpaint = StableDiffusionXLInpaintPipeline.from_pretrained(
|
| 39 |
local_dir, torch_dtype=dtype, use_safetensors=True
|
| 40 |
).to(self.device)
|
| 41 |
-
print(f"HANDLER
|
| 42 |
-
|
| 43 |
-
break # success on this dtype
|
| 44 |
except Exception as e:
|
| 45 |
last_err = e
|
| 46 |
self.pipe_txt2img = None
|
| 47 |
self.pipe_inpaint = None
|
| 48 |
-
print(f"HANDLER
|
| 49 |
|
| 50 |
if self.pipe_inpaint is None:
|
| 51 |
raise RuntimeError(f"Failed to load pipelines: {last_err}")
|
| 52 |
|
| 53 |
-
# Light memory tweaks
|
| 54 |
try:
|
| 55 |
self.pipe_inpaint.enable_attention_slicing()
|
| 56 |
if self.pipe_txt2img:
|
|
@@ -58,11 +64,10 @@ class EndpointHandler:
|
|
| 58 |
except Exception:
|
| 59 |
pass
|
| 60 |
|
| 61 |
-
print("HANDLER
|
| 62 |
|
| 63 |
# ---------- helpers ----------
|
| 64 |
def _unwrap(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
| 65 |
-
# Accept {"inputs": {...}} or raw dict
|
| 66 |
if "inputs" in data:
|
| 67 |
inner = data["inputs"]
|
| 68 |
if isinstance(inner, str):
|
|
@@ -74,12 +79,20 @@ class EndpointHandler:
|
|
| 74 |
return inner
|
| 75 |
return data
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
def _to_pil(self, payload: Any, mode: str) -> Image.Image:
|
| 78 |
-
# Accept
|
| 79 |
if isinstance(payload, str):
|
| 80 |
-
if payload.startswith("
|
| 81 |
-
payload =
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
| 83 |
return Image.open(io.BytesIO(payload)).convert(mode)
|
| 84 |
|
| 85 |
def _int(self, data, key, default):
|
|
@@ -111,12 +124,23 @@ class EndpointHandler:
|
|
| 111 |
except Exception:
|
| 112 |
generator = None
|
| 113 |
|
| 114 |
-
#
|
| 115 |
-
#
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
width = self._int(data, "width", 1024)
|
| 118 |
height = self._int(data, "height", 1024)
|
| 119 |
-
# SDXL likes multiples of 8
|
| 120 |
width = max(64, (width // 8) * 8)
|
| 121 |
height = max(64, (height // 8) * 8)
|
| 122 |
|
|
@@ -131,9 +155,9 @@ class EndpointHandler:
|
|
| 131 |
generator=generator,
|
| 132 |
).images[0]
|
| 133 |
else:
|
| 134 |
-
# Fallback:
|
| 135 |
canvas = Image.new("RGB", (width, height), (255, 255, 255))
|
| 136 |
-
mask = Image.new("L", (width, height), 255)
|
| 137 |
image = self.pipe_inpaint(
|
| 138 |
prompt=prompt,
|
| 139 |
image=canvas,
|
|
@@ -143,17 +167,14 @@ class EndpointHandler:
|
|
| 143 |
guidance_scale=guidance,
|
| 144 |
generator=generator,
|
| 145 |
).images[0]
|
| 146 |
-
|
| 147 |
-
# (2) inpaint path: init image (and optional mask)
|
| 148 |
else:
|
| 149 |
-
|
| 150 |
-
init_img = self._to_pil(
|
| 151 |
|
| 152 |
-
if
|
| 153 |
-
mask_img = self._to_pil(
|
| 154 |
else:
|
| 155 |
-
|
| 156 |
-
mask_img = Image.new("L", init_img.size, 255)
|
| 157 |
|
| 158 |
strength = self._float(data, "strength", 0.85)
|
| 159 |
|
|
|
|
| 1 |
+
# HANDLER v6 — SDXL txt2img + inpaint, supports image_url/mask_url, guards UNet channels
|
| 2 |
+
import os, io, json, base64, requests
|
| 3 |
from typing import Any, Dict
|
| 4 |
from PIL import Image
|
| 5 |
import torch
|
|
|
|
| 10 |
|
| 11 |
class EndpointHandler:
|
| 12 |
def __init__(self, path: str = "."):
|
| 13 |
+
print("HANDLER v6: init start")
|
| 14 |
+
token = os.getenv("HF_TOKEN")
|
|
|
|
| 15 |
local_dir = snapshot_download(MODEL_ID, token=token)
|
| 16 |
+
print(f"HANDLER v6: snapshot at {local_dir}")
|
| 17 |
|
| 18 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
self.pipe_txt2img = None
|
| 20 |
self.pipe_inpaint = None
|
| 21 |
last_err = None
|
| 22 |
|
|
|
|
| 23 |
for dtype in (torch.float16, torch.bfloat16, torch.float32):
|
| 24 |
try:
|
| 25 |
+
# Try to load txt2img
|
| 26 |
try:
|
| 27 |
+
p = StableDiffusionXLPipeline.from_pretrained(
|
| 28 |
local_dir, torch_dtype=dtype, use_safetensors=True
|
| 29 |
).to(self.device)
|
| 30 |
+
# Keep txt2img ONLY if UNet is 4-ch (proper base)
|
| 31 |
+
if getattr(p.unet.config, "in_channels", 4) == 4:
|
| 32 |
+
self.pipe_txt2img = p
|
| 33 |
+
print(f"HANDLER v6: txt2img OK ({dtype}, in_ch=4)")
|
| 34 |
+
else:
|
| 35 |
+
print("HANDLER v6: txt2img UNet in_ch != 4; disabling txt2img for this repo")
|
| 36 |
+
try:
|
| 37 |
+
p.to("cpu"); del p
|
| 38 |
+
except Exception:
|
| 39 |
+
pass
|
| 40 |
+
self.pipe_txt2img = None
|
| 41 |
except Exception as e:
|
| 42 |
self.pipe_txt2img = None
|
| 43 |
+
print(f"HANDLER v6: txt2img failed on {dtype}: {e}")
|
| 44 |
|
| 45 |
# Load inpaint (required)
|
| 46 |
self.pipe_inpaint = StableDiffusionXLInpaintPipeline.from_pretrained(
|
| 47 |
local_dir, torch_dtype=dtype, use_safetensors=True
|
| 48 |
).to(self.device)
|
| 49 |
+
print(f"HANDLER v6: inpaint OK ({dtype}, in_ch={getattr(self.pipe_inpaint.unet.config, 'in_channels', 'NA')})")
|
| 50 |
+
break
|
|
|
|
| 51 |
except Exception as e:
|
| 52 |
last_err = e
|
| 53 |
self.pipe_txt2img = None
|
| 54 |
self.pipe_inpaint = None
|
| 55 |
+
print(f"HANDLER v6: inpaint failed on {dtype}: {e}")
|
| 56 |
|
| 57 |
if self.pipe_inpaint is None:
|
| 58 |
raise RuntimeError(f"Failed to load pipelines: {last_err}")
|
| 59 |
|
|
|
|
| 60 |
try:
|
| 61 |
self.pipe_inpaint.enable_attention_slicing()
|
| 62 |
if self.pipe_txt2img:
|
|
|
|
| 64 |
except Exception:
|
| 65 |
pass
|
| 66 |
|
| 67 |
+
print("HANDLER v6: ready")
|
| 68 |
|
| 69 |
# ---------- helpers ----------
|
| 70 |
def _unwrap(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
| 71 |
if "inputs" in data:
|
| 72 |
inner = data["inputs"]
|
| 73 |
if isinstance(inner, str):
|
|
|
|
| 79 |
return inner
|
| 80 |
return data
|
| 81 |
|
| 82 |
+
def _fetch_url_bytes(self, url: str) -> bytes:
|
| 83 |
+
r = requests.get(url, timeout=60)
|
| 84 |
+
r.raise_for_status()
|
| 85 |
+
return r.content
|
| 86 |
+
|
| 87 |
def _to_pil(self, payload: Any, mode: str) -> Image.Image:
|
| 88 |
+
# Accept: bytes, base64, or data URL, or HTTP(S) URL
|
| 89 |
if isinstance(payload, str):
|
| 90 |
+
if payload.startswith("http://") or payload.startswith("https://"):
|
| 91 |
+
payload = self._fetch_url_bytes(payload)
|
| 92 |
+
else:
|
| 93 |
+
if payload.startswith("data:"):
|
| 94 |
+
payload = payload.split(",", 1)[1]
|
| 95 |
+
payload = base64.b64decode(payload)
|
| 96 |
return Image.open(io.BytesIO(payload)).convert(mode)
|
| 97 |
|
| 98 |
def _int(self, data, key, default):
|
|
|
|
| 124 |
except Exception:
|
| 125 |
generator = None
|
| 126 |
|
| 127 |
+
# Normalize keys for images/masks
|
| 128 |
+
# Accept: image / init_image / image_url ; mask / mask_url
|
| 129 |
+
init_img_payload = None
|
| 130 |
+
if "image" in data:
|
| 131 |
+
init_img_payload = data["image"]
|
| 132 |
+
elif "init_image" in data:
|
| 133 |
+
init_img_payload = data["init_image"]
|
| 134 |
+
elif "image_url" in data:
|
| 135 |
+
init_img_payload = data["image_url"]
|
| 136 |
+
|
| 137 |
+
mask_payload = data.get("mask") or data.get("mask_url")
|
| 138 |
+
|
| 139 |
+
# --------- choose mode ---------
|
| 140 |
+
if init_img_payload is None:
|
| 141 |
+
# txt2img mode (only if we truly have a 4-ch UNet)
|
| 142 |
width = self._int(data, "width", 1024)
|
| 143 |
height = self._int(data, "height", 1024)
|
|
|
|
| 144 |
width = max(64, (width // 8) * 8)
|
| 145 |
height = max(64, (height // 8) * 8)
|
| 146 |
|
|
|
|
| 155 |
generator=generator,
|
| 156 |
).images[0]
|
| 157 |
else:
|
| 158 |
+
# Fallback: blank-canvas inpaint (works with 9-ch UNet)
|
| 159 |
canvas = Image.new("RGB", (width, height), (255, 255, 255))
|
| 160 |
+
mask = Image.new("L", (width, height), 255)
|
| 161 |
image = self.pipe_inpaint(
|
| 162 |
prompt=prompt,
|
| 163 |
image=canvas,
|
|
|
|
| 167 |
guidance_scale=guidance,
|
| 168 |
generator=generator,
|
| 169 |
).images[0]
|
|
|
|
|
|
|
| 170 |
else:
|
| 171 |
+
# inpaint mode
|
| 172 |
+
init_img = self._to_pil(init_img_payload, "RGB")
|
| 173 |
|
| 174 |
+
if mask_payload is not None:
|
| 175 |
+
mask_img = self._to_pil(mask_payload, "L").resize(init_img.size, Image.NEAREST)
|
| 176 |
else:
|
| 177 |
+
mask_img = Image.new("L", init_img.size, 255) # edit-all default
|
|
|
|
| 178 |
|
| 179 |
strength = self._float(data, "strength", 0.85)
|
| 180 |
|