Commit
·
e6ea976
1
Parent(s):
8a3facd
fix handler
Browse files- .DS_Store +0 -0
- handler.py +41 -18
.DS_Store
CHANGED
|
Binary files a/.DS_Store and b/.DS_Store differ
|
|
|
handler.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import io, base64
|
| 2 |
from PIL import Image
|
| 3 |
import torch
|
|
@@ -5,31 +6,53 @@ from diffusers import StableDiffusionXLInpaintPipeline
|
|
| 5 |
|
| 6 |
class EndpointHandler:
|
| 7 |
def __init__(self, path="."):
|
| 8 |
-
|
| 9 |
-
"andro-flock/LUSTIFY-SDXL-NSFW-checkpoint-v2-0-INPAINTING",
|
| 10 |
-
torch_dtype=torch.float16,
|
| 11 |
-
variant="fp16"
|
| 12 |
-
).to("cuda")
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
def __call__(self, data):
|
| 20 |
-
prompt
|
| 21 |
-
init_img = self._to_pil(data["image"]
|
| 22 |
-
mask_img = self._to_pil(data["mask"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
prompt=prompt,
|
| 26 |
image=init_img,
|
| 27 |
mask_image=mask_img,
|
| 28 |
-
num_inference_steps=
|
| 29 |
-
guidance_scale=
|
| 30 |
-
strength=
|
| 31 |
).images[0]
|
| 32 |
|
| 33 |
-
buf = io.BytesIO()
|
| 34 |
-
result.save(buf, format="PNG")
|
| 35 |
return {"image_base64": base64.b64encode(buf.getvalue()).decode()}
|
|
|
|
| 1 |
+
# handler.py (replace your __init__)
|
| 2 |
import io, base64
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
|
|
|
| 6 |
|
| 7 |
class EndpointHandler:
|
| 8 |
def __init__(self, path="."):
|
| 9 |
+
model_id = "andro-flock/LUSTIFY-SDXL-NSFW-checkpoint-v2-0-INPAINTING"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Try pure fp16 first (no variant); fall back if the GPU/dtype mismatches
|
| 12 |
+
try:
|
| 13 |
+
self.pipe = StableDiffusionXLInpaintPipeline.from_pretrained(
|
| 14 |
+
model_id,
|
| 15 |
+
torch_dtype=torch.float16, # no variant arg
|
| 16 |
+
use_safetensors=True
|
| 17 |
+
).to("cuda")
|
| 18 |
+
except Exception:
|
| 19 |
+
try:
|
| 20 |
+
self.pipe = StableDiffusionXLInpaintPipeline.from_pretrained(
|
| 21 |
+
model_id,
|
| 22 |
+
torch_dtype=torch.bfloat16,
|
| 23 |
+
use_safetensors=True
|
| 24 |
+
).to("cuda")
|
| 25 |
+
except Exception:
|
| 26 |
+
self.pipe = StableDiffusionXLInpaintPipeline.from_pretrained(
|
| 27 |
+
model_id,
|
| 28 |
+
torch_dtype=torch.float32,
|
| 29 |
+
use_safetensors=True
|
| 30 |
+
).to("cuda")
|
| 31 |
+
|
| 32 |
+
def _to_pil(self, b64_or_bytes, mode):
|
| 33 |
+
if isinstance(b64_or_bytes, str):
|
| 34 |
+
b = base64.b64decode(b64_or_bytes)
|
| 35 |
+
else:
|
| 36 |
+
b = b64_or_bytes
|
| 37 |
+
return Image.open(io.BytesIO(b)).convert(mode)
|
| 38 |
|
| 39 |
def __call__(self, data):
|
| 40 |
+
prompt = data.get("prompt", "")
|
| 41 |
+
init_img = self._to_pil(data["image"], "RGB")
|
| 42 |
+
mask_img = self._to_pil(data["mask"], "L") # white=repaint, black=keep
|
| 43 |
+
|
| 44 |
+
steps = int(data.get("num_inference_steps", 30))
|
| 45 |
+
guidance = float(data.get("guidance_scale", 7.0))
|
| 46 |
+
strength = float(data.get("strength", 0.85))
|
| 47 |
|
| 48 |
+
out = self.pipe(
|
| 49 |
prompt=prompt,
|
| 50 |
image=init_img,
|
| 51 |
mask_image=mask_img,
|
| 52 |
+
num_inference_steps=steps,
|
| 53 |
+
guidance_scale=guidance,
|
| 54 |
+
strength=strength
|
| 55 |
).images[0]
|
| 56 |
|
| 57 |
+
buf = io.BytesIO(); out.save(buf, format="PNG")
|
|
|
|
| 58 |
return {"image_base64": base64.b64encode(buf.getvalue()).decode()}
|