--- library_name: transformers license: apache-2.0 base_model: ibm-granite/granite-4.0-h-small tags: - generated_from_trainer datasets: - allura-forge/claude-oss-sft model-index: - name: model-output results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.13.0.dev0` ```yaml # ------------------------------------------------------------------ # 0. Model & Tokeniser # ------------------------------------------------------------------ base_model: ibm-granite/granite-4.0-h-small trust_remote_code: true # ------------------------------------------------------------------ # 1. Precision & Memory # ------------------------------------------------------------------ bf16: auto fp16: tf32: false load_in_8bit: false load_in_4bit: false # vram helpers flash_attention: true # gradient_checkpointing: true # <-- uncomment if you want old-style GC instead of FSDP AC # ------------------------------------------------------------------ # 2. FSDP (zero-3 + cpu-offload) # ------------------------------------------------------------------ fsdp: - auto_wrap - full_shard fsdp_config: fsdp_version: 2 fsdp_offload_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: GraniteMoeHybridDecoderLayer fsdp_state_dict_type: SHARDED_STATE_DICT fsdp_sharding_strategy: FULL_SHARD fsdp_reshard_after_forward: true fsdp_activation_checkpointing: true # disables itself if unsupported # ------------------------------------------------------------------ # 3. Training Schedule # ------------------------------------------------------------------ num_epochs: 2 learning_rate: 2e-5 lr_scheduler: cosine warmup_ratio: 0.05 max_grad_norm: 0.1 weight_decay: 0.0 optimizer: adamw_torch_8bit micro_batch_size: 2 gradient_accumulation_steps: 2 sequence_len: 8192 sample_packing: true pad_to_sequence_len: true # saves / eval frequency saves_per_epoch: 4 val_set_size: 0.0 logging_steps: 1 strict: false # ------------------------------------------------------------------ # 4. Data & Prompt Template # ------------------------------------------------------------------ datasets: - path: allura-forge/claude-oss-sft type: chat_template split: train field_messages: conversations message_field_role: from message_field_content: value chat_template: jinja chat_template_jinja: | {%- for message in messages -%} {{- '<|start_of_role|>' + message['role'] + '<|end_of_role|>' + message['content'] + '<|end_of_text|>' -}} {%- if loop.last and add_generation_prompt -%} {{- '<|start_of_role|>assistant<|end_of_role|>' -}} {%- endif -%} {%- endfor -%} shuffle_merged_datasets: true dataset_prepared_path: last_run_prepared remove_unused_columns: false train_on_inputs: false group_by_length: false # ------------------------------------------------------------------ # 5. Plug-ins (memory / speed) # ------------------------------------------------------------------ plugins: - axolotl.integrations.liger.LigerPlugin # ------------------------------------------------------------------ # 6. Weights & Biases # ------------------------------------------------------------------ wandb_project: claumba-average wandb_name: woke wandb_entity: wandb_watch: wandb_log_model: # ------------------------------------------------------------------ # 7. I/O & Resume # ------------------------------------------------------------------ output_dir: ./model-output resume_from_checkpoint: local_rank: # ------------------------------------------------------------------ # 8. Unused / commented-out # ------------------------------------------------------------------ # evals_per_epoch: # eval_steps: 100 # eval_sample_packing: false # early_stopping_patience: # xformers_attention: ```

# model-output This model is a fine-tuned version of [ibm-granite/granite-4.0-h-small](https://huggingface.co/ibm-granite/granite-4.0-h-small) on the allura-forge/claude-oss-sft dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 15 - training_steps: 308 ### Training results ### Framework versions - Transformers 4.57.1 - Pytorch 2.8.0+cu128 - Datasets 4.3.0 - Tokenizers 0.22.1