Clone from jinaai/jina-code-embeddings-1.5b
Browse files
README.md
ADDED
|
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model:
|
| 3 |
+
- Qwen/Qwen2.5-Coder-1.5B
|
| 4 |
+
license: cc-by-nc-4.0
|
| 5 |
+
tags:
|
| 6 |
+
- feature-extraction
|
| 7 |
+
- mteb
|
| 8 |
+
- sentence-transformers
|
| 9 |
+
inference: false
|
| 10 |
+
library_name: transformers
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
<br><br>
|
| 14 |
+
|
| 15 |
+
<p align="center">
|
| 16 |
+
<img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px">
|
| 17 |
+
</p>
|
| 18 |
+
|
| 19 |
+
<p align="center">
|
| 20 |
+
<b>The code embedding model trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
|
| 21 |
+
</p>
|
| 22 |
+
|
| 23 |
+
# Jina Code Embeddings: A Small but Performant Code Embedding Model
|
| 24 |
+
|
| 25 |
+
## Intended Usage & Model Info
|
| 26 |
+
`jina-code-embeddings` is an embedding model for code retrieval.
|
| 27 |
+
The model supports various types of code retrieval (text-to-code, code-to-code, code-to-text, code-to-completion) and technical question answering across 15+ programming languages.
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
Built on [Qwen/Qwen2.5-Coder-1.5B](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B), `jina-code-embeddings-1.5b` features:
|
| 31 |
+
|
| 32 |
+
- **Multilingual support** (15+ programming languages) and compatibility with a wide range of domains, including web development, software development, machine learning, data science, and educational coding problems.
|
| 33 |
+
- **Task-specific instruction prefixes** for NL2Code, Code2Code, Code2NL, Code2Completion, and Technical QA, which can be selected at inference time.
|
| 34 |
+
- **Flexible embedding size**: dense embeddings are 1536-dimensional by default but can be truncated to as low as 128 with minimal performance loss.
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
Summary of features:
|
| 38 |
+
|
| 39 |
+
| Feature | Jina Code Embeddings 1.5B |
|
| 40 |
+
|------------|------------|
|
| 41 |
+
| Base Model | Qwen2.5-Coder-1.5B |
|
| 42 |
+
| Supported Tasks | `nl2code`, `code2code`, `code2nl`, `code2completion`, `qa` |
|
| 43 |
+
| Model DType | BFloat 16 |
|
| 44 |
+
| Max Sequence Length | 32768 |
|
| 45 |
+
| Embedding Vector Dimension | 1536 |
|
| 46 |
+
| Matryoshka dimensions | 128, 256, 512, 1024, 1536 |
|
| 47 |
+
| Pooling Strategy | Last-token pooling |
|
| 48 |
+
| Attention Mechanism | FlashAttention2 |
|
| 49 |
+
|
| 50 |
+
## Usage
|
| 51 |
+
|
| 52 |
+
<details>
|
| 53 |
+
<summary>Requirements</a></summary>
|
| 54 |
+
|
| 55 |
+
The following Python packages are required:
|
| 56 |
+
|
| 57 |
+
- `transformers>=4.53.0`
|
| 58 |
+
- `torch>=2.7.1`
|
| 59 |
+
|
| 60 |
+
### Optional / Recommended
|
| 61 |
+
- **flash-attention**: Installing [flash-attention](https://github.com/Dao-AILab/flash-attention) is recommended for improved inference speed and efficiency, but not mandatory.
|
| 62 |
+
- **sentence-transformers**: If you want to use the model via the `sentence-transformers` interface, install this package as well.
|
| 63 |
+
</details>
|
| 64 |
+
|
| 65 |
+
<details>
|
| 66 |
+
<summary>via <a href="https://huggingface.co/docs/transformers/en/index">transformers</a></summary>
|
| 67 |
+
|
| 68 |
+
```python
|
| 69 |
+
# !pip install transformers>=4.53.0 torch>=2.7.1
|
| 70 |
+
|
| 71 |
+
import torch
|
| 72 |
+
import torch.nn.functional as F
|
| 73 |
+
|
| 74 |
+
from transformers import AutoModel, AutoTokenizer
|
| 75 |
+
|
| 76 |
+
INSTRUCTION_CONFIG = {
|
| 77 |
+
"nl2code": {
|
| 78 |
+
"query": "Find the most relevant code snippet given the following query:\n",
|
| 79 |
+
"passage": "Candidate code snippet:\n"
|
| 80 |
+
},
|
| 81 |
+
"qa": {
|
| 82 |
+
"query": "Find the most relevant answer given the following question:\n",
|
| 83 |
+
"passage": "Candidate answer:\n"
|
| 84 |
+
},
|
| 85 |
+
"code2code": {
|
| 86 |
+
"query": "Find an equivalent code snippet given the following code snippet:\n",
|
| 87 |
+
"passage": "Candidate code snippet:\n"
|
| 88 |
+
},
|
| 89 |
+
"code2nl": {
|
| 90 |
+
"query": "Find the most relevant comment given the following code snippet:\n",
|
| 91 |
+
"passage": "Candidate comment:\n"
|
| 92 |
+
},
|
| 93 |
+
"code2completion": {
|
| 94 |
+
"query": "Find the most relevant completion given the following start of code snippet:\n",
|
| 95 |
+
"passage": "Candidate completion:\n"
|
| 96 |
+
}
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
MAX_LENGTH = 8192
|
| 100 |
+
|
| 101 |
+
def cosine_similarity(x,y):
|
| 102 |
+
x = F.normalize(x, p=2, dim=1)
|
| 103 |
+
y = F.normalize(y, p=2, dim=1)
|
| 104 |
+
return x @ y.T
|
| 105 |
+
|
| 106 |
+
def last_token_pool(last_hidden_states, attention_mask):
|
| 107 |
+
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
| 108 |
+
if left_padding:
|
| 109 |
+
return last_hidden_states[:, -1]
|
| 110 |
+
else:
|
| 111 |
+
sequence_lengths = attention_mask.sum(dim=1) - 1
|
| 112 |
+
batch_size = last_hidden_states.shape[0]
|
| 113 |
+
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
| 114 |
+
|
| 115 |
+
def add_instruction(instruction, query):
|
| 116 |
+
return f'{instruction}{query}'
|
| 117 |
+
|
| 118 |
+
# The queries and documents to embed
|
| 119 |
+
queries = [
|
| 120 |
+
add_instruction(INSTRUCTION_CONFIG["nl2code"]["query"], "print hello world in python"),
|
| 121 |
+
add_instruction(INSTRUCTION_CONFIG["nl2code"]["query"], "initialize array of 5 zeros in c++")
|
| 122 |
+
]
|
| 123 |
+
documents = [
|
| 124 |
+
add_instruction(INSTRUCTION_CONFIG["nl2code"]["passage"], "print('Hello World!')"),
|
| 125 |
+
add_instruction(INSTRUCTION_CONFIG["nl2code"]["passage"], "int arr[5] = {0, 0, 0, 0, 0};")
|
| 126 |
+
]
|
| 127 |
+
all_inputs = queries + documents
|
| 128 |
+
|
| 129 |
+
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-code-embeddings-1.5b')
|
| 130 |
+
model = AutoModel.from_pretrained('jinaai/jina-code-embeddings-1.5b')
|
| 131 |
+
|
| 132 |
+
batch_dict = tokenizer(
|
| 133 |
+
all_inputs,
|
| 134 |
+
padding=True,
|
| 135 |
+
truncation=True,
|
| 136 |
+
max_length=MAX_LENGTH,
|
| 137 |
+
return_tensors="pt",
|
| 138 |
+
)
|
| 139 |
+
batch_dict.to(model.device)
|
| 140 |
+
outputs = model(**batch_dict)
|
| 141 |
+
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
| 142 |
+
query_embeddings = embeddings[:2]
|
| 143 |
+
passage_embeddings = embeddings[2:]
|
| 144 |
+
|
| 145 |
+
# Compute the (cosine) similarity between the query and document embeddings
|
| 146 |
+
scores = cosine_similarity(query_embeddings, passage_embeddings)
|
| 147 |
+
print(scores)
|
| 148 |
+
# tensor([[0.7647, 0.1115],
|
| 149 |
+
# [0.0930, 0.6606]], grad_fn=<MmBackward0>)
|
| 150 |
+
```
|
| 151 |
+
</details>
|
| 152 |
+
|
| 153 |
+
<details>
|
| 154 |
+
<summary>via <a href="https://sbert.net/">sentence-transformers</a></summary>
|
| 155 |
+
|
| 156 |
+
```python
|
| 157 |
+
# !pip install sentence_transformers>=5.0.0 torch>=2.7.1
|
| 158 |
+
|
| 159 |
+
import torch
|
| 160 |
+
from sentence_transformers import SentenceTransformer
|
| 161 |
+
|
| 162 |
+
# Load the model
|
| 163 |
+
model = SentenceTransformer(
|
| 164 |
+
"jinaai/jina-code-embeddings-1.5b",
|
| 165 |
+
model_kwargs={
|
| 166 |
+
"torch_dtype": torch.bfloat16,
|
| 167 |
+
"attn_implementation": "flash_attention_2",
|
| 168 |
+
"device_map": "cuda"
|
| 169 |
+
},
|
| 170 |
+
tokenizer_kwargs={"padding_side": "left"},
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
# The queries and documents to embed
|
| 174 |
+
queries = [
|
| 175 |
+
"print hello world in python",
|
| 176 |
+
"initialize array of 5 zeros in c++"
|
| 177 |
+
]
|
| 178 |
+
documents = [
|
| 179 |
+
"print('Hello World!')",
|
| 180 |
+
"int arr[5] = {0, 0, 0, 0, 0};"
|
| 181 |
+
]
|
| 182 |
+
|
| 183 |
+
query_embeddings = model.encode(queries, prompt_name="nl2code_query")
|
| 184 |
+
document_embeddings = model.encode(documents, prompt_name="nl2code_document")
|
| 185 |
+
|
| 186 |
+
# Compute the (cosine) similarity between the query and document embeddings
|
| 187 |
+
similarity = model.similarity(query_embeddings, document_embeddings)
|
| 188 |
+
print(similarity)
|
| 189 |
+
# tensor([[0.7670, 0.1117],
|
| 190 |
+
# [0.0938, 0.6607]])
|
| 191 |
+
```
|
| 192 |
+
</details>
|
| 193 |
+
|
| 194 |
+
<details>
|
| 195 |
+
<summary>via <a href="https://github.com/vllm-project/vllm">vLLM</a></summary>
|
| 196 |
+
|
| 197 |
+
```python
|
| 198 |
+
|
| 199 |
+
import torch
|
| 200 |
+
import torch.nn.functional as F
|
| 201 |
+
from vllm import LLM
|
| 202 |
+
|
| 203 |
+
INSTRUCTION_CONFIG = {
|
| 204 |
+
"nl2code": {
|
| 205 |
+
"query": "Find the most relevant code snippet given the following query:\n",
|
| 206 |
+
"passage": "Candidate code snippet:\n"
|
| 207 |
+
},
|
| 208 |
+
"qa": {
|
| 209 |
+
"query": "Find the most relevant answer given the following question:\n",
|
| 210 |
+
"passage": "Candidate answer:\n"
|
| 211 |
+
},
|
| 212 |
+
"code2code": {
|
| 213 |
+
"query": "Find an equivalent code snippet given the following code snippet:\n",
|
| 214 |
+
"passage": "Candidate code snippet:\n"
|
| 215 |
+
},
|
| 216 |
+
"code2nl": {
|
| 217 |
+
"query": "Find the most relevant comment given the following code snippet:\n",
|
| 218 |
+
"passage": "Candidate comment:\n"
|
| 219 |
+
},
|
| 220 |
+
"code2completion": {
|
| 221 |
+
"query": "Find the most relevant completion given the following start of code snippet:\n",
|
| 222 |
+
"passage": "Candidate completion:\n"
|
| 223 |
+
}
|
| 224 |
+
}
|
| 225 |
+
|
| 226 |
+
def add_instruction(instruction, text):
|
| 227 |
+
return f"{instruction}{text}"
|
| 228 |
+
|
| 229 |
+
def cosine_similarity(x, y):
|
| 230 |
+
x = F.normalize(x, p=2, dim=1)
|
| 231 |
+
y = F.normalize(y, p=2, dim=1)
|
| 232 |
+
return x @ y.T
|
| 233 |
+
|
| 234 |
+
# Build the queries and documents
|
| 235 |
+
queries = [
|
| 236 |
+
add_instruction(INSTRUCTION_CONFIG["nl2code"]["query"], "print hello world in python"),
|
| 237 |
+
add_instruction(INSTRUCTION_CONFIG["nl2code"]["query"], "initialize array of 5 zeros in c++"),
|
| 238 |
+
]
|
| 239 |
+
documents = [
|
| 240 |
+
add_instruction(INSTRUCTION_CONFIG["nl2code"]["passage"], "print('Hello World!')"),
|
| 241 |
+
add_instruction(INSTRUCTION_CONFIG["nl2code"]["passage"], "int arr[5] = {0, 0, 0, 0, 0};"),
|
| 242 |
+
]
|
| 243 |
+
all_inputs = queries + documents
|
| 244 |
+
|
| 245 |
+
# vLLM embedding model
|
| 246 |
+
llm = LLM(
|
| 247 |
+
model="jinaai/jina-code-embeddings-1.5b",
|
| 248 |
+
task="embed"
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
# Encode with vLLM
|
| 252 |
+
outputs = llm.encode(all_inputs)
|
| 253 |
+
|
| 254 |
+
# Collect embeddings into a single tensor
|
| 255 |
+
emb_list = []
|
| 256 |
+
for out in outputs:
|
| 257 |
+
vec = out.outputs.data.detach()
|
| 258 |
+
emb_list.append(vec)
|
| 259 |
+
embeddings = torch.stack(emb_list, dim=0)
|
| 260 |
+
|
| 261 |
+
# Split into query and passage embeddings
|
| 262 |
+
n_q = len(queries)
|
| 263 |
+
query_embeddings = embeddings[:n_q]
|
| 264 |
+
passage_embeddings = embeddings[n_q:]
|
| 265 |
+
|
| 266 |
+
# Cosine similarity matrix (queries x documents)
|
| 267 |
+
scores = cosine_similarity(query_embeddings, passage_embeddings)
|
| 268 |
+
print(scores)
|
| 269 |
+
# tensor([[0.7650, 0.1118],
|
| 270 |
+
# [0.0937, 0.6613]])
|
| 271 |
+
```
|
| 272 |
+
|
| 273 |
+
</details>
|
| 274 |
+
|
| 275 |
+
## Citation
|
| 276 |
+
|
| 277 |
+
Please refer to our [technical report of jina-code-embeddings](https://arxiv.org/abs/2508.21290) for training details and benchmarks. If you find it useful in your research, please cite the following paper:
|
| 278 |
+
|
| 279 |
+
```
|
| 280 |
+
@misc{kryvosheieva2025efficientcodeembeddingscode,
|
| 281 |
+
title={Efficient Code Embeddings from Code Generation Models},
|
| 282 |
+
author={Daria Kryvosheieva and Saba Sturua and Michael Günther and Scott Martens and Han Xiao},
|
| 283 |
+
year={2025},
|
| 284 |
+
eprint={2508.21290},
|
| 285 |
+
archivePrefix={arXiv},
|
| 286 |
+
primaryClass={cs.CL},
|
| 287 |
+
url={https://arxiv.org/abs/2508.21290},
|
| 288 |
+
}
|
| 289 |
+
```
|
| 290 |
+
|
| 291 |
+
## Contact
|
| 292 |
+
|
| 293 |
+
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
|