Update modeling_aimv2.py
Browse files- modeling_aimv2.py +13 -12
modeling_aimv2.py
CHANGED
|
@@ -311,8 +311,9 @@ class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
|
| 311 |
|
| 312 |
import logging
|
| 313 |
|
|
|
|
| 314 |
# Setup logging
|
| 315 |
-
logging.basicConfig(level=logging.
|
| 316 |
logger = logging.getLogger(__name__)
|
| 317 |
|
| 318 |
class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
|
@@ -340,15 +341,15 @@ class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
|
| 340 |
output_hidden_states: Optional[bool] = None,
|
| 341 |
return_dict: Optional[bool] = None,
|
| 342 |
) -> Union[tuple, ImageClassifierOutput]:
|
| 343 |
-
logger.
|
| 344 |
-
logger.
|
| 345 |
-
logger.
|
| 346 |
-
logger.
|
| 347 |
|
| 348 |
return_dict = (
|
| 349 |
return_dict if return_dict is not None else self.config.use_return_dict
|
| 350 |
)
|
| 351 |
-
logger.
|
| 352 |
|
| 353 |
# Call base model
|
| 354 |
outputs = self.aimv2(
|
|
@@ -358,28 +359,28 @@ class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
|
| 358 |
return_dict=return_dict,
|
| 359 |
)
|
| 360 |
sequence_output = outputs[0]
|
| 361 |
-
logger.
|
| 362 |
|
| 363 |
# Classifier head
|
| 364 |
logits = self.classifier(sequence_output[:, 0, :])
|
| 365 |
-
logger.
|
| 366 |
|
| 367 |
loss = None
|
| 368 |
if labels is not None:
|
| 369 |
labels = labels.to(logits.device)
|
| 370 |
-
logger.
|
| 371 |
|
| 372 |
# Always use cross-entropy loss
|
| 373 |
loss_fct = CrossEntropyLoss()
|
| 374 |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 375 |
-
logger.
|
| 376 |
|
| 377 |
if not return_dict:
|
| 378 |
output = (logits,) + outputs[1:]
|
| 379 |
-
logger.
|
| 380 |
return ((loss,) + output) if loss is not None else output
|
| 381 |
|
| 382 |
-
logger.
|
| 383 |
return ImageClassifierOutput(
|
| 384 |
loss=loss,
|
| 385 |
logits=logits,
|
|
|
|
| 311 |
|
| 312 |
import logging
|
| 313 |
|
| 314 |
+
|
| 315 |
# Setup logging
|
| 316 |
+
logging.basicConfig(level=logging.INFO)
|
| 317 |
logger = logging.getLogger(__name__)
|
| 318 |
|
| 319 |
class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
|
|
|
| 341 |
output_hidden_states: Optional[bool] = None,
|
| 342 |
return_dict: Optional[bool] = None,
|
| 343 |
) -> Union[tuple, ImageClassifierOutput]:
|
| 344 |
+
logger.info("Forward pass initiated")
|
| 345 |
+
logger.info(f"Input pixel_values shape: {pixel_values.shape if pixel_values is not None else 'None'}")
|
| 346 |
+
logger.info(f"Head mask provided: {head_mask is not None}")
|
| 347 |
+
logger.info(f"Labels provided: {labels is not None}")
|
| 348 |
|
| 349 |
return_dict = (
|
| 350 |
return_dict if return_dict is not None else self.config.use_return_dict
|
| 351 |
)
|
| 352 |
+
logger.info(f"Using return_dict: {return_dict}")
|
| 353 |
|
| 354 |
# Call base model
|
| 355 |
outputs = self.aimv2(
|
|
|
|
| 359 |
return_dict=return_dict,
|
| 360 |
)
|
| 361 |
sequence_output = outputs[0]
|
| 362 |
+
logger.info(f"Sequence output shape: {sequence_output.shape}")
|
| 363 |
|
| 364 |
# Classifier head
|
| 365 |
logits = self.classifier(sequence_output[:, 0, :])
|
| 366 |
+
logger.info(f"Logits shape: {logits.shape}")
|
| 367 |
|
| 368 |
loss = None
|
| 369 |
if labels is not None:
|
| 370 |
labels = labels.to(logits.device)
|
| 371 |
+
logger.info(f"Labels shape: {labels.shape}")
|
| 372 |
|
| 373 |
# Always use cross-entropy loss
|
| 374 |
loss_fct = CrossEntropyLoss()
|
| 375 |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 376 |
+
logger.info(f"Loss computed: {loss.item()}")
|
| 377 |
|
| 378 |
if not return_dict:
|
| 379 |
output = (logits,) + outputs[1:]
|
| 380 |
+
logger.info("Returning as tuple")
|
| 381 |
return ((loss,) + output) if loss is not None else output
|
| 382 |
|
| 383 |
+
logger.info("Returning as ImageClassifierOutput")
|
| 384 |
return ImageClassifierOutput(
|
| 385 |
loss=loss,
|
| 386 |
logits=logits,
|