amaye15 commited on
Commit
2d0edb4
·
verified ·
1 Parent(s): b0a61c5

Update modeling_aimv2.py

Browse files
Files changed (1) hide show
  1. modeling_aimv2.py +13 -12
modeling_aimv2.py CHANGED
@@ -311,8 +311,9 @@ class AIMv2ForImageClassification(AIMv2PretrainedModel):
311
 
312
  import logging
313
 
 
314
  # Setup logging
315
- logging.basicConfig(level=logging.DEBUG)
316
  logger = logging.getLogger(__name__)
317
 
318
  class AIMv2ForImageClassification(AIMv2PretrainedModel):
@@ -340,15 +341,15 @@ class AIMv2ForImageClassification(AIMv2PretrainedModel):
340
  output_hidden_states: Optional[bool] = None,
341
  return_dict: Optional[bool] = None,
342
  ) -> Union[tuple, ImageClassifierOutput]:
343
- logger.debug("Forward pass initiated")
344
- logger.debug(f"Input pixel_values shape: {pixel_values.shape if pixel_values is not None else 'None'}")
345
- logger.debug(f"Head mask provided: {head_mask is not None}")
346
- logger.debug(f"Labels provided: {labels is not None}")
347
 
348
  return_dict = (
349
  return_dict if return_dict is not None else self.config.use_return_dict
350
  )
351
- logger.debug(f"Using return_dict: {return_dict}")
352
 
353
  # Call base model
354
  outputs = self.aimv2(
@@ -358,28 +359,28 @@ class AIMv2ForImageClassification(AIMv2PretrainedModel):
358
  return_dict=return_dict,
359
  )
360
  sequence_output = outputs[0]
361
- logger.debug(f"Sequence output shape: {sequence_output.shape}")
362
 
363
  # Classifier head
364
  logits = self.classifier(sequence_output[:, 0, :])
365
- logger.debug(f"Logits shape: {logits.shape}")
366
 
367
  loss = None
368
  if labels is not None:
369
  labels = labels.to(logits.device)
370
- logger.debug(f"Labels shape: {labels.shape}")
371
 
372
  # Always use cross-entropy loss
373
  loss_fct = CrossEntropyLoss()
374
  loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
375
- logger.debug(f"Loss computed: {loss.item()}")
376
 
377
  if not return_dict:
378
  output = (logits,) + outputs[1:]
379
- logger.debug("Returning as tuple")
380
  return ((loss,) + output) if loss is not None else output
381
 
382
- logger.debug("Returning as ImageClassifierOutput")
383
  return ImageClassifierOutput(
384
  loss=loss,
385
  logits=logits,
 
311
 
312
  import logging
313
 
314
+
315
  # Setup logging
316
+ logging.basicConfig(level=logging.INFO)
317
  logger = logging.getLogger(__name__)
318
 
319
  class AIMv2ForImageClassification(AIMv2PretrainedModel):
 
341
  output_hidden_states: Optional[bool] = None,
342
  return_dict: Optional[bool] = None,
343
  ) -> Union[tuple, ImageClassifierOutput]:
344
+ logger.info("Forward pass initiated")
345
+ logger.info(f"Input pixel_values shape: {pixel_values.shape if pixel_values is not None else 'None'}")
346
+ logger.info(f"Head mask provided: {head_mask is not None}")
347
+ logger.info(f"Labels provided: {labels is not None}")
348
 
349
  return_dict = (
350
  return_dict if return_dict is not None else self.config.use_return_dict
351
  )
352
+ logger.info(f"Using return_dict: {return_dict}")
353
 
354
  # Call base model
355
  outputs = self.aimv2(
 
359
  return_dict=return_dict,
360
  )
361
  sequence_output = outputs[0]
362
+ logger.info(f"Sequence output shape: {sequence_output.shape}")
363
 
364
  # Classifier head
365
  logits = self.classifier(sequence_output[:, 0, :])
366
+ logger.info(f"Logits shape: {logits.shape}")
367
 
368
  loss = None
369
  if labels is not None:
370
  labels = labels.to(logits.device)
371
+ logger.info(f"Labels shape: {labels.shape}")
372
 
373
  # Always use cross-entropy loss
374
  loss_fct = CrossEntropyLoss()
375
  loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
376
+ logger.info(f"Loss computed: {loss.item()}")
377
 
378
  if not return_dict:
379
  output = (logits,) + outputs[1:]
380
+ logger.info("Returning as tuple")
381
  return ((loss,) + output) if loss is not None else output
382
 
383
+ logger.info("Returning as ImageClassifierOutput")
384
  return ImageClassifierOutput(
385
  loss=loss,
386
  logits=logits,