Update modeling_aimv2.py
Browse files- modeling_aimv2.py +62 -1
modeling_aimv2.py
CHANGED
|
@@ -222,7 +222,7 @@ class AIMv2Model(AIMv2PretrainedModel):
|
|
| 222 |
hidden_states=hidden_states,
|
| 223 |
)
|
| 224 |
|
| 225 |
-
|
| 226 |
class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
| 227 |
def __init__(self, config: AIMv2Config):
|
| 228 |
super().__init__(config)
|
|
@@ -306,3 +306,64 @@ class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
|
| 306 |
hidden_states=outputs.hidden_states,
|
| 307 |
# attentions=outputs.attentions,
|
| 308 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
hidden_states=hidden_states,
|
| 223 |
)
|
| 224 |
|
| 225 |
+
'''
|
| 226 |
class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
| 227 |
def __init__(self, config: AIMv2Config):
|
| 228 |
super().__init__(config)
|
|
|
|
| 306 |
hidden_states=outputs.hidden_states,
|
| 307 |
# attentions=outputs.attentions,
|
| 308 |
)
|
| 309 |
+
'''
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
| 313 |
+
def __init__(self, config: AIMv2Config):
|
| 314 |
+
super().__init__(config)
|
| 315 |
+
|
| 316 |
+
self.num_labels = config.num_labels
|
| 317 |
+
self.aimv2 = AIMv2Model(config)
|
| 318 |
+
|
| 319 |
+
# Classifier head
|
| 320 |
+
self.classifier = (
|
| 321 |
+
nn.Linear(config.hidden_size, config.num_labels)
|
| 322 |
+
if config.num_labels > 0
|
| 323 |
+
else nn.Identity()
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
# Initialize weights and apply final processing
|
| 327 |
+
self.post_init()
|
| 328 |
+
|
| 329 |
+
def forward(
|
| 330 |
+
self,
|
| 331 |
+
pixel_values: Optional[torch.Tensor] = None,
|
| 332 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 333 |
+
labels: Optional[torch.Tensor] = None,
|
| 334 |
+
output_hidden_states: Optional[bool] = None,
|
| 335 |
+
return_dict: Optional[bool] = None,
|
| 336 |
+
) -> Union[tuple, ImageClassifierOutput]:
|
| 337 |
+
|
| 338 |
+
return_dict = (
|
| 339 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
outputs = self.aimv2(
|
| 343 |
+
pixel_values,
|
| 344 |
+
mask=head_mask,
|
| 345 |
+
output_hidden_states=output_hidden_states,
|
| 346 |
+
return_dict=return_dict,
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
sequence_output = outputs[0]
|
| 350 |
+
|
| 351 |
+
logits = self.classifier(sequence_output[:, 0, :])
|
| 352 |
+
|
| 353 |
+
loss = None
|
| 354 |
+
if labels is not None:
|
| 355 |
+
labels = labels.to(logits.device)
|
| 356 |
+
|
| 357 |
+
# Always use cross-entropy loss
|
| 358 |
+
loss_fct = CrossEntropyLoss()
|
| 359 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 360 |
+
|
| 361 |
+
if not return_dict:
|
| 362 |
+
output = (logits,) + outputs[1:]
|
| 363 |
+
return ((loss,) + output) if loss is not None else output
|
| 364 |
+
|
| 365 |
+
return ImageClassifierOutput(
|
| 366 |
+
loss=loss,
|
| 367 |
+
logits=logits,
|
| 368 |
+
hidden_states=outputs.hidden_states,
|
| 369 |
+
)
|