Upload loader.py with huggingface_hub
Browse files
loader.py
ADDED
|
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# from datasets import load_dataset
|
| 2 |
+
|
| 3 |
+
# raw_ds = load_dataset("simwit/omni-med-vqa-mini")
|
| 4 |
+
# full_dataset = raw_ds["test"]
|
| 5 |
+
# split = full_dataset.train_test_split(test_size=0.2, seed=42)
|
| 6 |
+
# train_dataset = split["train"]
|
| 7 |
+
# eval_dataset = split["test"]
|
| 8 |
+
|
| 9 |
+
# print("✅ SFT Dataset loaded:")
|
| 10 |
+
# print(f" 📚 Train samples: {len(train_dataset)}")
|
| 11 |
+
# print(f" 🧪 Eval samples: {len(eval_dataset)}")
|
| 12 |
+
# print(f"\n📝 Single Sample: [IMAGE] {train_dataset[0]['question']} {train_dataset[0]['gt_answer']} {train_dataset[0]['image_path']} {list(train_dataset[0].keys())}")
|
| 13 |
+
"""
|
| 14 |
+
Convert jsonl with `image` and `conversations` into
|
| 15 |
+
a HuggingFace Dataset that LFM2-VL expects.
|
| 16 |
+
Each sample must contain:
|
| 17 |
+
- image : str (absolute path or relative to repo root)
|
| 18 |
+
- messages: List[Dict] # openai-style
|
| 19 |
+
"""
|
| 20 |
+
import json, datasets
|
| 21 |
+
from pathlib import Path
|
| 22 |
+
from typing import List, Dict
|
| 23 |
+
import multiprocessing as mp
|
| 24 |
+
from PIL import Image
|
| 25 |
+
SYSTEM_MSG = "You are a helpful vision-language assistant."
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
"""
|
| 29 |
+
Convert jsonl with `image` and `conversations` into
|
| 30 |
+
a HuggingFace Dataset that works with the medical sample format.
|
| 31 |
+
"""
|
| 32 |
+
import json, datasets
|
| 33 |
+
from pathlib import Path
|
| 34 |
+
from typing import List, Dict
|
| 35 |
+
import multiprocessing as mp
|
| 36 |
+
from PIL import Image
|
| 37 |
+
def format_vlm_sample(sample):
|
| 38 |
+
"""Format a vlm sample into the expected message format."""
|
| 39 |
+
return [
|
| 40 |
+
{
|
| 41 |
+
"role": "user",
|
| 42 |
+
"content": [
|
| 43 |
+
{"type": "image", "image": sample["image"]},
|
| 44 |
+
{"type": "text", "text": sample["question"]},
|
| 45 |
+
],
|
| 46 |
+
},
|
| 47 |
+
{"role": "assistant", "content": [{"type": "text", "text": sample["gt_answer"]}]},
|
| 48 |
+
]
|
| 49 |
+
def jsonl_to_dataset_hf_parallel(jsonl_file: str, image_root: str = "", num_workers: int = None):
|
| 50 |
+
"""
|
| 51 |
+
Fixed parallel version that handles None values properly
|
| 52 |
+
"""
|
| 53 |
+
if num_workers is None:
|
| 54 |
+
num_workers = 8
|
| 55 |
+
# Load and validate all lines first
|
| 56 |
+
valid_lines = []
|
| 57 |
+
with open(jsonl_file, encoding="utf-8") as f:
|
| 58 |
+
for line_num, line in enumerate(f):
|
| 59 |
+
line = line.strip()
|
| 60 |
+
if line: # Skip empty lines
|
| 61 |
+
try:
|
| 62 |
+
# Quick validation
|
| 63 |
+
rec = json.loads(line)
|
| 64 |
+
if "image" in rec and "conversations" in rec:
|
| 65 |
+
valid_lines.append({"line": line, "image_root": image_root, "line_num": line_num})
|
| 66 |
+
except:
|
| 67 |
+
print(f"Warning: Line {line_num}: Invalid JSON")
|
| 68 |
+
continue
|
| 69 |
+
|
| 70 |
+
print(f"Found {len(valid_lines)} valid lines to process")
|
| 71 |
+
|
| 72 |
+
# Create dataset from valid lines
|
| 73 |
+
raw_dataset = datasets.Dataset.from_list(valid_lines)
|
| 74 |
+
|
| 75 |
+
def process_example_safe(example):
|
| 76 |
+
"""Process function that never returns None"""
|
| 77 |
+
|
| 78 |
+
rec = json.loads(example["line"])
|
| 79 |
+
image_path = Path(example["image_root"]) / rec["image"]
|
| 80 |
+
|
| 81 |
+
if not image_path.exists():
|
| 82 |
+
# Return a dummy valid entry instead of None
|
| 83 |
+
return {
|
| 84 |
+
"image": str(image_path.absolute()),
|
| 85 |
+
"question": "dummy",
|
| 86 |
+
"gt_answer": "dummy",
|
| 87 |
+
"valid": False
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
# Extract question and answer
|
| 91 |
+
question = ""
|
| 92 |
+
gt_answer = ""
|
| 93 |
+
|
| 94 |
+
for turn in rec["conversations"]:
|
| 95 |
+
if turn["from"] == "human":
|
| 96 |
+
question = turn["value"].replace("<image>", "").strip()
|
| 97 |
+
elif turn["from"] == "gpt" or turn["from"] == "assistant":
|
| 98 |
+
gt_answer = turn["value"].strip()
|
| 99 |
+
break
|
| 100 |
+
|
| 101 |
+
if not question or not gt_answer:
|
| 102 |
+
return {
|
| 103 |
+
"image": str(image_path.absolute()),
|
| 104 |
+
"question": "dummy",
|
| 105 |
+
"gt_answer": "dummy",
|
| 106 |
+
"valid": False
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
return {
|
| 110 |
+
"image": str(image_path.absolute()),
|
| 111 |
+
"question": question,
|
| 112 |
+
"gt_answer": gt_answer,
|
| 113 |
+
"valid": True
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
# Process in parallel
|
| 119 |
+
processed_dataset = raw_dataset.map(
|
| 120 |
+
process_example_safe,
|
| 121 |
+
num_proc=num_workers,
|
| 122 |
+
remove_columns=["line", "image_root", "line_num"],
|
| 123 |
+
desc="Processing medical QA records"
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
# Filter out invalid entries
|
| 127 |
+
valid_dataset = processed_dataset.filter(lambda x: x["valid"])
|
| 128 |
+
|
| 129 |
+
# Remove the 'valid' column
|
| 130 |
+
valid_dataset = valid_dataset.remove_columns(["valid"])
|
| 131 |
+
|
| 132 |
+
print(f"Valid samples after processing: {len(valid_dataset)}")
|
| 133 |
+
|
| 134 |
+
# # Load images sequentially to manage memory
|
| 135 |
+
# def load_image_safe(example):
|
| 136 |
+
# image = Image.open(example["image"])
|
| 137 |
+
# if image.mode != 'RGB':
|
| 138 |
+
# image = image.convert('RGB')
|
| 139 |
+
# example["image"] = image
|
| 140 |
+
# example["image_loaded"] = True
|
| 141 |
+
# return example
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
# # Load images
|
| 145 |
+
# final_dataset = valid_dataset.map(
|
| 146 |
+
# load_image_safe,
|
| 147 |
+
# desc="Loading images",
|
| 148 |
+
# num_proc=256 # Sequential for image loading
|
| 149 |
+
# )
|
| 150 |
+
|
| 151 |
+
# # Filter out failed image loads
|
| 152 |
+
# final_dataset = valid_dataset.filter(lambda x: x["image_loaded"])
|
| 153 |
+
# final_dataset = final_dataset.remove_columns(["image_loaded"])
|
| 154 |
+
|
| 155 |
+
print(f"✅ Final dataset size: {len(valid_dataset)} medical QA samples")
|
| 156 |
+
return valid_dataset
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
if __name__ == "__main__":
|
| 160 |
+
# Test the loader
|
| 161 |
+
ds = jsonl_to_dataset_hf_parallel("data/train.jsonl")
|
| 162 |
+
if len(ds) > 0:
|
| 163 |
+
print("Sample:", ds[0].keys())
|
| 164 |
+
print("Question:", ds[0]["question"])
|
| 165 |
+
print("Answer:", ds[0]["gt_answer"])
|