import pickle import pandas as pd # Load the ARIMA model with open("arima_model.pkl", "rb") as f: model = pickle.load(f) def predict_stock(input_data): """ input_data: dictionary with structure like {"feature": value} For ARIMA, usually you just forecast next n steps. """ # Example: forecasting next n steps n_steps = input_data.get("steps", 5) forecast = model.forecast(steps=n_steps) return forecast.tolist() # Example usage if __name__ == "__main__": data = {"steps": 10} print(predict_stock(data))