Peng-fei-Wang commited on
Commit
518f46a
·
verified ·
1 Parent(s): 205909b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -1
README.md CHANGED
@@ -2,4 +2,106 @@
2
  license: apache-2.0
3
  base_model:
4
  - seeklhy/OmniSQL-32B
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
  base_model:
4
  - seeklhy/OmniSQL-32B
5
+ ---
6
+
7
+
8
+ ## Important Links
9
+
10
+ [![Paper](https://img.shields.io/badge/paper-arXiv-red)](https://arxiv.org/abs/2509.24403)
11
+ [![GitHub](https://img.shields.io/badge/GitHub-Repo-blue.svg)](https://github.com/antgroup/Agentar-Scale-SQL)
12
+ [![Leaderboard](https://img.shields.io/badge/BIRD%20Leaderboard-%231-brightgreen)](https://bird-bench.github.io/)
13
+ [![Hugging Face](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-yellow)](https://huggingface.co/collections/antgroup/agentar-scale-sql)
14
+ [![ModelScope](https://img.shields.io/badge/ModelScope-Models-blue)](https://modelscope.cn/collections/Agentar-Scale-SQL-0c368e98f73f41)
15
+
16
+ ## Introduction
17
+
18
+ We are excited to release the **Agentar-Scale-SQL-Generation-32B**, the core **Reasoning SQL Generator** used in our SOTA framework, **Agentar-Scale-SQL**. Our framework achieved **81.67% execution accuracy** on the challenging BIRD benchmark, ranking first on the official leaderboard.
19
+
20
+ This model is a key component of our "Orchestrated Test-Time Scaling" strategy and has several key features:
21
+
22
+ - **Base Model:** It is fine-tuned from `Omni-SQL-32B`.
23
+ - **RL-Enhanced Reasoning:** The model was further trained using an execution-grounded **Reinforcement Learning** framework (GRPO) to enhance its intrinsic reasoning capabilities.
24
+ - **Deep Reasoning:** It is engineered to conduct deep, step-by-step reasoning and construct complex, high-accuracy SQL queries.
25
+
26
+ This model is one of the two main generators in the `Agentar-Scale-SQL` framework's "Diverse Synthesis" step, working in parallel with an ICL generator to produce a robust pool of SQL candidates.
27
+
28
+ ## Model Downloads
29
+
30
+ | **Model** | **Role** |
31
+ |-----------------------------------|----------------|
32
+ | **Agentar-Scale-SQL-Generation-32B** | **SQL Generator** |
33
+ | Agentar-Scale-SQL-Selection-32B | SQL Selector |
34
+
35
+ ## Performance
36
+
37
+ The performance metrics below reflect the **entire Agentar-Scale-SQL framework**, which uses this Generation model as a key component. The results demonstrate our SOTA performance on the BIRD benchmark.
38
+
39
+ | Methods | EX (Dev) | **EX (Test)** | R-VES (%) |
40
+ |:-----------------------------|:---:|:---:|:---------:|
41
+ | **Agentar-Scale-SQL (Ours)** | **74.90** | **81.67** | **77.00** |
42
+ | AskData + GPT-4o | 76.14 | 80.88 | 76.24 |
43
+ | LongData-SQL | 74.32 | 77.53 | 71.89 |
44
+ | CHASE-SQL + Gemini | 74.90 | 76.02 | 69.94 |
45
+ | JoyDataAgent-SQL | 74.25 | 75.74 | 70.16 |
46
+ | TCDataAgent-SQL | 74.12 | 75.74 | - |
47
+ | Contextual-SQL | 73.50 | 75.63 | 70.02 |
48
+ | XiYan-SQL | 73.34 | 75.63 | 71.41 |
49
+
50
+
51
+ ## Prompt Template
52
+
53
+ ````python
54
+ PROMPT_TEMPLATE = """Task Overview:
55
+ You are a data science expert. Below, you are provided with a database schema and a natural language question. Your task is to understand the schema and generate a valid SQL query to answer the question.
56
+
57
+ Database Engine:
58
+ {{ dialect }}
59
+
60
+ Database Schema:
61
+ {{ db_schemas }}
62
+ This schema describes the database's structure, including tables, columns, primary keys, foreign keys, and any relevant relationships or constraints.
63
+ {% if matched_contents %}
64
+ Matched contents:
65
+ {{ matched_contents }}
66
+ Matched contents presents values related to the question, together with their source table and column, for your reference in SQL generation.
67
+ {% endif %}
68
+ Question:
69
+ {%- if hint %}
70
+ {{ hint }}
71
+ {{ question }}
72
+ {%- else %}
73
+ {{ question }}
74
+ {%- endif %}
75
+
76
+ Instructions:
77
+ - If Matched contents is provided, you can use it as reference when generating the SQL query.
78
+ - Make sure you only output the information that is asked in the question. If the question asks for a specific column, make sure to only include that column in the SELECT clause, nothing more.
79
+ - The generated query should return all of the information asked in the question without any missing or extra information.
80
+ - Before generating the final SQL query, please think through the steps of how to write the query.
81
+
82
+ Output Format:
83
+ In your answer, please enclose the generated SQL query in a code block:
84
+ ```sql
85
+ -- Your SQL query
86
+ ```
87
+
88
+ Take a deep breath and think step by step to find the correct SQL query.
89
+ """
90
+ ````
91
+
92
+ ## Acknowledgments
93
+
94
+ If you find our work useful, please cite the Agentar-Scale-SQL paper:
95
+
96
+ ```bibtex
97
+ @misc{wang2025agentarscalesqladvancingtexttosqlorchestrated,
98
+ title={Agentar-Scale-SQL: Advancing Text-to-SQL through Orchestrated Test-Time Scaling},
99
+ author={Pengfei Wang and Baolin Sun and Xuemei Dong and Yaxun Dai and Hongwei Yuan and Mengdie Chu and Yingqi Gao and Xiang Qi and Peng Zhang and Ying Yan},
100
+ year={2025},
101
+ eprint={2509.24403},
102
+ archivePrefix={arXiv},
103
+ primaryClass={cs.CL},
104
+ url={https://arxiv.org/abs/2509.24403},
105
+ }
106
+ ```
107
+