Update README.md
Browse files
README.md
CHANGED
|
@@ -1,33 +1,30 @@
|
|
| 1 |
---
|
| 2 |
-
pipeline_tag:
|
| 3 |
language: fr
|
| 4 |
-
license:
|
| 5 |
datasets:
|
| 6 |
- unicamp-dl/mmarco
|
| 7 |
metrics:
|
| 8 |
- recall
|
| 9 |
tags:
|
| 10 |
-
-
|
| 11 |
library_name: sentence-transformers
|
| 12 |
---
|
| 13 |
-
# crossencoder-camembert-base-mmarcoFR
|
| 14 |
|
| 15 |
-
|
| 16 |
|
| 17 |
-
It performs cross-attention between a question-passage pair and outputs a relevance score between 0 and 1.
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
## Usage
|
| 20 |
-
***
|
| 21 |
|
| 22 |
-
|
| 23 |
|
| 24 |
-
Using
|
| 25 |
|
| 26 |
-
|
| 27 |
-
pip install -U sentence-transformers
|
| 28 |
-
```
|
| 29 |
-
|
| 30 |
-
Then you can use the model like this:
|
| 31 |
|
| 32 |
```python
|
| 33 |
from sentence_transformers import CrossEncoder
|
|
@@ -38,9 +35,9 @@ scores = model.predict(pairs)
|
|
| 38 |
print(scores)
|
| 39 |
```
|
| 40 |
|
| 41 |
-
####
|
| 42 |
|
| 43 |
-
|
| 44 |
|
| 45 |
```python
|
| 46 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
@@ -58,12 +55,13 @@ with torch.no_grad():
|
|
| 58 |
print(scores)
|
| 59 |
```
|
| 60 |
|
| 61 |
-
## Evaluation
|
| 62 |
***
|
| 63 |
|
| 64 |
-
|
| 65 |
|
| 66 |
-
|
|
|
|
|
|
|
| 67 |
|
| 68 |
| | model | Vocab. | #Param. | Size | RP | MRR@10 | R@10(↑) | R@20 | R@50 | R@100 |
|
| 69 |
|---:|:-----------------------------------------------------------------------------------------------------------------------------|:-------|--------:|------:|-------:|---------:|---------:|-------:|-------:|--------:|
|
|
@@ -80,23 +78,27 @@ Below, we compare the model performance with other cross-encoder models fine-tun
|
|
| 80 |
| 10 | [crossencoder-MiniLM-L2-msmarco-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-MiniLM-L2-msmarco-mmarcoFR) | en | 15M | 62MB | 30.82 | 44.30 | 72.03 | 82.65 | 93.35 | 98.10 |
|
| 81 |
-->
|
| 82 |
|
| 83 |
-
## Training
|
| 84 |
***
|
| 85 |
|
| 86 |
-
|
| 87 |
|
| 88 |
-
|
| 89 |
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
-
|
| 93 |
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
|
| 97 |
|
| 98 |
## Citation
|
| 99 |
-
***
|
| 100 |
|
| 101 |
```bibtex
|
| 102 |
@online{louis2023,
|
|
|
|
| 1 |
---
|
| 2 |
+
pipeline_tag: text-classification
|
| 3 |
language: fr
|
| 4 |
+
license: mit
|
| 5 |
datasets:
|
| 6 |
- unicamp-dl/mmarco
|
| 7 |
metrics:
|
| 8 |
- recall
|
| 9 |
tags:
|
| 10 |
+
- passage-reranking
|
| 11 |
library_name: sentence-transformers
|
| 12 |
---
|
|
|
|
| 13 |
|
| 14 |
+
# crossencoder-camembert-base-mmarcoFR
|
| 15 |
|
| 16 |
+
This is a cross-encoder model for French. It performs cross-attention between a question-passage pair and outputs a relevance score between 0 and 1.
|
| 17 |
+
The model should be used as a reranker for semantic search: given a query and a set of potentially relevant passages retrieved by an efficient first-stage
|
| 18 |
+
retrieval system (e.g., BM25 or a fine-tuned dense single-vector bi-encoder), encode each query-passage pair and sort the passages in a decreasing order of
|
| 19 |
+
relevance according to the model's predicted scores.
|
| 20 |
|
| 21 |
## Usage
|
|
|
|
| 22 |
|
| 23 |
+
Here are some examples for using the model with [Sentence-Transformers](#using-sentence-transformers) or [Huggingface Transformers](#using-huggingface-transformers).
|
| 24 |
|
| 25 |
+
#### Using Sentence-Transformers
|
| 26 |
|
| 27 |
+
Start by installing the [library](https://www.SBERT.net): `pip install -U sentence-transformers`. Then, you can use the model like this:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
```python
|
| 30 |
from sentence_transformers import CrossEncoder
|
|
|
|
| 35 |
print(scores)
|
| 36 |
```
|
| 37 |
|
| 38 |
+
#### Using HuggingFace Transformers
|
| 39 |
|
| 40 |
+
Start by installing the [library](https://huggingface.co/docs/transformers): `pip install -U transformers`. Then, you can use the model like this:
|
| 41 |
|
| 42 |
```python
|
| 43 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
| 55 |
print(scores)
|
| 56 |
```
|
| 57 |
|
|
|
|
| 58 |
***
|
| 59 |
|
| 60 |
+
## Evaluation
|
| 61 |
|
| 62 |
+
We evaluate the model on 500 random training queries from [mMARCO-fr](https://ir-datasets.com/mmarco.html#mmarco/v2/fr/) (which were excluded from training) by reranking
|
| 63 |
+
subsets of candidate passages comprising of at least one relevant and up to 200 BM25 negative passages for each query. Below, we compare the model performance with other
|
| 64 |
+
cross-encoder models fine-tuned on the same dataset. We report the R-precision (RP), mean reciprocal rank (MRR), and recall at various cut-offs (R@k).
|
| 65 |
|
| 66 |
| | model | Vocab. | #Param. | Size | RP | MRR@10 | R@10(↑) | R@20 | R@50 | R@100 |
|
| 67 |
|---:|:-----------------------------------------------------------------------------------------------------------------------------|:-------|--------:|------:|-------:|---------:|---------:|-------:|-------:|--------:|
|
|
|
|
| 78 |
| 10 | [crossencoder-MiniLM-L2-msmarco-mmarcoFR](https://huggingface.co/antoinelouis/crossencoder-MiniLM-L2-msmarco-mmarcoFR) | en | 15M | 62MB | 30.82 | 44.30 | 72.03 | 82.65 | 93.35 | 98.10 |
|
| 79 |
-->
|
| 80 |
|
|
|
|
| 81 |
***
|
| 82 |
|
| 83 |
+
## Training
|
| 84 |
|
| 85 |
+
#### Data
|
| 86 |
|
| 87 |
+
We use the French training samples from the [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) dataset, a multilingual machine-translated version of MS MARCO
|
| 88 |
+
that contains 8.8M passages and 539K training queries. We sample 1M question-passage pairs from the official ~39.8M
|
| 89 |
+
[training triples](https://microsoft.github.io/msmarco/Datasets.html#passage-ranking-dataset) with a positive-to-negative ratio of 4 (i.e., 25% of the pairs are
|
| 90 |
+
relevant and 75% are irrelevant).
|
| 91 |
|
| 92 |
+
#### Implementation
|
| 93 |
|
| 94 |
+
The model is initialized from the [camembert-base](https://huggingface.co/camembert-base) checkpoint and optimized via the binary cross-entropy loss
|
| 95 |
+
(as in [monoBERT](https://doi.org/10.48550/arXiv.1910.14424)). It is fine-tuned on one 32GB NVIDIA V100 GPU for 10 epochs (i.e., 312.4k steps) using the AdamW optimizer
|
| 96 |
+
with a batch size of 32, a peak learning rate of 2e-5 with warm up along the first 500 steps and linear scheduling. We set the maximum sequence length of the
|
| 97 |
+
concatenated question-passage pairs to 512 tokens. We use the sigmoid function to get scores between 0 and 1.
|
| 98 |
|
| 99 |
+
***
|
| 100 |
|
| 101 |
## Citation
|
|
|
|
| 102 |
|
| 103 |
```bibtex
|
| 104 |
@online{louis2023,
|