Upload extract_lora.py
Browse files- extract_lora.py +139 -0
extract_lora.py
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import argparse
|
| 3 |
+
from safetensors.torch import save_file, safe_open
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
import sys
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def get_torch_dtype(dtype_str: str):
|
| 9 |
+
"""Converts a string to a torch.dtype object."""
|
| 10 |
+
if dtype_str == "fp32":
|
| 11 |
+
return torch.float32
|
| 12 |
+
if dtype_str == "fp16":
|
| 13 |
+
return torch.float16
|
| 14 |
+
if dtype_str == "bf16":
|
| 15 |
+
return torch.bfloat16
|
| 16 |
+
raise ValueError(f"Unsupported dtype: {dtype_str}")
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def extract_and_svd_lora(model_a_path: str, model_b_path: str, output_path: str, rank: int, device: str, alpha: float,
|
| 20 |
+
dtype: torch.dtype):
|
| 21 |
+
"""
|
| 22 |
+
Extracts the difference between two models, applies SVD to reduce the rank,
|
| 23 |
+
and saves the result as a LoRA file.
|
| 24 |
+
"""
|
| 25 |
+
print(f"Loading base model A: {model_a_path}")
|
| 26 |
+
print(f"Loading finetuned model B: {model_b_path}")
|
| 27 |
+
|
| 28 |
+
lora_tensors = {}
|
| 29 |
+
|
| 30 |
+
with safe_open(model_a_path, framework="pt", device="cpu") as f_a, \
|
| 31 |
+
safe_open(model_b_path, framework="pt", device="cpu") as f_b:
|
| 32 |
+
|
| 33 |
+
keys_a = set(f_a.keys())
|
| 34 |
+
keys_b = set(f_b.keys())
|
| 35 |
+
common_keys = keys_a.intersection(keys_b)
|
| 36 |
+
|
| 37 |
+
# Filter for processable layers (typically linear and conv weights)
|
| 38 |
+
# We exclude biases and non-weight tensors.
|
| 39 |
+
weight_keys = {k for k in common_keys if k.endswith('.weight') and 'lora_' not in k}
|
| 40 |
+
|
| 41 |
+
if not weight_keys:
|
| 42 |
+
print("No common weight keys found between the two models. Exiting.")
|
| 43 |
+
sys.exit(1)
|
| 44 |
+
|
| 45 |
+
print(f"Found {len(weight_keys)} common weight keys to process.")
|
| 46 |
+
|
| 47 |
+
# Main processing loop with progress bar
|
| 48 |
+
for key in tqdm(sorted(list(weight_keys)), desc="Processing Layers"):
|
| 49 |
+
try:
|
| 50 |
+
# Load tensors and move to the selected device and dtype
|
| 51 |
+
tensor_a = f_a.get_tensor(key).to(device=device, dtype=dtype)
|
| 52 |
+
tensor_b = f_b.get_tensor(key).to(device=device, dtype=dtype)
|
| 53 |
+
|
| 54 |
+
if tensor_a.shape != tensor_b.shape:
|
| 55 |
+
print(f"Skipping key {key} due to shape mismatch: A={tensor_a.shape}, B={tensor_b.shape}")
|
| 56 |
+
continue
|
| 57 |
+
|
| 58 |
+
# Calculate the difference (delta weight)
|
| 59 |
+
delta_w = tensor_b - tensor_a
|
| 60 |
+
|
| 61 |
+
# SVD works on 2D matrices. Reshape conv layers and other ND tensors.
|
| 62 |
+
original_shape = delta_w.shape
|
| 63 |
+
if delta_w.dim() > 2:
|
| 64 |
+
delta_w = delta_w.view(original_shape[0], -1)
|
| 65 |
+
|
| 66 |
+
# --- Core SVD Logic ---
|
| 67 |
+
# ΔW ≈ U * S * Vh
|
| 68 |
+
# U: Left singular vectors
|
| 69 |
+
# S: Singular values (a 1D vector)
|
| 70 |
+
# Vh: Right singular vectors (transposed)
|
| 71 |
+
U, S, Vh = torch.linalg.svd(delta_w, full_matrices=False)
|
| 72 |
+
|
| 73 |
+
# Truncate to the desired rank
|
| 74 |
+
current_rank = min(rank, S.size(0)) # Ensure rank is not > possible rank
|
| 75 |
+
U = U[:, :current_rank]
|
| 76 |
+
S = S[:current_rank]
|
| 77 |
+
Vh = Vh[:current_rank, :]
|
| 78 |
+
|
| 79 |
+
# --- Decompose into LoRA A and B matrices ---
|
| 80 |
+
# LoRA A (lora_down) is Vh
|
| 81 |
+
# LoRA B (lora_up) is U * S
|
| 82 |
+
# We scale lora_up by the singular values to retain the magnitude
|
| 83 |
+
lora_down = Vh
|
| 84 |
+
lora_up = U @ torch.diag(S)
|
| 85 |
+
|
| 86 |
+
# Reshape back to original conv format if necessary
|
| 87 |
+
if len(original_shape) > 2:
|
| 88 |
+
# For Conv2D, lora_down is (rank, in_channels * k_h * k_w)
|
| 89 |
+
# and lora_up is (out_channels, rank). No reshape needed for up.
|
| 90 |
+
pass # The matrix form is standard for LoRA conv layers
|
| 91 |
+
|
| 92 |
+
# Create LoRA tensor names
|
| 93 |
+
base_name = key.replace('.weight', '')
|
| 94 |
+
lora_down_name = f"{base_name}.lora_down.weight"
|
| 95 |
+
lora_up_name = f"{base_name}.lora_up.weight"
|
| 96 |
+
alpha_name = f"{base_name}.alpha"
|
| 97 |
+
|
| 98 |
+
# Store tensors, moving them to CPU for saving
|
| 99 |
+
lora_tensors[lora_down_name] = lora_down.contiguous().cpu().to(torch.float32)
|
| 100 |
+
lora_tensors[lora_up_name] = lora_up.contiguous().cpu().to(torch.float32)
|
| 101 |
+
lora_tensors[alpha_name] = torch.tensor(alpha).to(torch.float32)
|
| 102 |
+
|
| 103 |
+
except Exception as e:
|
| 104 |
+
print(f"Failed to process key {key}: {e}")
|
| 105 |
+
|
| 106 |
+
# Save the final LoRA file
|
| 107 |
+
if not lora_tensors:
|
| 108 |
+
print("No tensors were processed. Output file will not be created.")
|
| 109 |
+
return
|
| 110 |
+
|
| 111 |
+
print(f"\nSaving {len(lora_tensors)} tensors to {output_path}...")
|
| 112 |
+
save_file(lora_tensors, output_path)
|
| 113 |
+
print("✅ Done!")
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
if __name__ == "__main__":
|
| 117 |
+
parser = argparse.ArgumentParser(description="Extract and SVD a LoRA from two SafeTensors checkpoints.")
|
| 118 |
+
|
| 119 |
+
parser.add_argument("model_a", type=str, help="Path to the base model (A) checkpoint in .safetensors format.")
|
| 120 |
+
parser.add_argument("model_b", type=str, help="Path to the finetuned model (B) checkpoint in .safetensors format.")
|
| 121 |
+
parser.add_argument("output", type=str, help="Path to save the output LoRA file in .safetensors format.")
|
| 122 |
+
|
| 123 |
+
parser.add_argument("--rank", type=int, required=True, help="The target rank for the SVD.")
|
| 124 |
+
parser.add_argument("--device", type=str, default="cuda", choices=["cuda", "cpu"],
|
| 125 |
+
help="Device to use for computation ('cuda' or 'cpu').")
|
| 126 |
+
parser.add_argument("--alpha", type=float, default=1.0, help="The alpha (scaling) factor for the LoRA.")
|
| 127 |
+
parser.add_argument("--precision", type=str, default="fp32", choices=["fp32", "fp16", "bf16"],
|
| 128 |
+
help="Precision to use for calculations.")
|
| 129 |
+
|
| 130 |
+
args = parser.parse_args()
|
| 131 |
+
|
| 132 |
+
# Device check
|
| 133 |
+
if args.device == "cuda" and not torch.cuda.is_available():
|
| 134 |
+
print("CUDA is not available. Falling back to CPU.")
|
| 135 |
+
args.device = "cpu"
|
| 136 |
+
|
| 137 |
+
dtype = get_torch_dtype(args.precision)
|
| 138 |
+
|
| 139 |
+
extract_and_svd_lora(args.model_a, args.model_b, args.output, args.rank, args.device, args.alpha, dtype)
|