Update README.md
Browse files
README.md
CHANGED
|
@@ -2,4 +2,84 @@
|
|
| 2 |
license: other
|
| 3 |
license_name: apple-sample-code-license
|
| 4 |
license_link: LICENSE
|
|
|
|
|
|
|
| 5 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: other
|
| 3 |
license_name: apple-sample-code-license
|
| 4 |
license_link: LICENSE
|
| 5 |
+
library_name: ml-aim
|
| 6 |
+
pipeline_tag: image-classification
|
| 7 |
---
|
| 8 |
+
|
| 9 |
+
# AIM: Autoregressive Image Models
|
| 10 |
+
|
| 11 |
+
*Alaaeldin El-Nouby, Michal Klein, Shuangfei Zhai, Miguel Angel Bautista, Alexander Toshev, Vaishaal Shankar,
|
| 12 |
+
Joshua M Susskind, and Armand Joulin*
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
This software project accompanies the research paper, [Scalable Pre-training of Large Autoregressive Image Models](https://arxiv.org/abs/2401.08541).
|
| 16 |
+
|
| 17 |
+
We introduce **AIM** a collection of vision models pre-trained with an autoregressive generative objective.
|
| 18 |
+
We show that autoregressive pre-training of image features exhibits similar scaling properties to their
|
| 19 |
+
textual counterpart (i.e. Large Language Models). Specifically, we highlight two findings:
|
| 20 |
+
1. the model capacity can be trivially scaled to billions of parameters, and
|
| 21 |
+
2. AIM effectively leverages large collections of uncurated image data.
|
| 22 |
+
|
| 23 |
+
## Installation
|
| 24 |
+
Please install PyTorch using the official [installation instructions](https://pytorch.org/get-started/locally/).
|
| 25 |
+
Afterward, install the package as:
|
| 26 |
+
```commandline
|
| 27 |
+
pip install git+https://git@github.com/apple/ml-aim.git
|
| 28 |
+
```
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
## Usage
|
| 32 |
+
Below we provide an example of loading the model via [HuggingFace Hub](https://huggingface.co/docs/hub/) as:
|
| 33 |
+
```python
|
| 34 |
+
from PIL import Image
|
| 35 |
+
|
| 36 |
+
from aim.torch.models import AIMForImageClassification
|
| 37 |
+
from aim.torch.data import val_transforms
|
| 38 |
+
|
| 39 |
+
img = Image.open(...)
|
| 40 |
+
model = AIMForImageClassification.from_pretrained("apple/aim-1B")
|
| 41 |
+
transform = val_transforms()
|
| 42 |
+
|
| 43 |
+
inp = transform(img).unsqueeze(0)
|
| 44 |
+
logits, features = model(inp)
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
### ImageNet-1k results (frozen trunk)
|
| 48 |
+
|
| 49 |
+
The table below contains the classification results on ImageNet-1k validation set.
|
| 50 |
+
|
| 51 |
+
<table style="margin: auto">
|
| 52 |
+
<thead>
|
| 53 |
+
<tr>
|
| 54 |
+
<th rowspan="2">model</th>
|
| 55 |
+
<th colspan="2">top-1 IN-1k</th>
|
| 56 |
+
</tr>
|
| 57 |
+
<tr>
|
| 58 |
+
<th>last layer</th>
|
| 59 |
+
<th>best layer</th>
|
| 60 |
+
</tr>
|
| 61 |
+
</thead>
|
| 62 |
+
|
| 63 |
+
<tbody>
|
| 64 |
+
<tr>
|
| 65 |
+
<td>AIM-0.6B</td>
|
| 66 |
+
<td>78.5%</td>
|
| 67 |
+
<td>79.4%</td>
|
| 68 |
+
</tr>
|
| 69 |
+
<tr>
|
| 70 |
+
<td>AIM-1B</td>
|
| 71 |
+
<td>80.6%</td>
|
| 72 |
+
<td>82.3%</td>
|
| 73 |
+
</tr>
|
| 74 |
+
<tr>
|
| 75 |
+
<td>AIM-3B</td>
|
| 76 |
+
<td>82.2%</td>
|
| 77 |
+
<td>83.3%</td>
|
| 78 |
+
</tr>
|
| 79 |
+
<tr>
|
| 80 |
+
<td>AIM-7B</td>
|
| 81 |
+
<td>82.4%</td>
|
| 82 |
+
<td>84.0%</td>
|
| 83 |
+
</tr>
|
| 84 |
+
</tbody>
|
| 85 |
+
</table>
|