|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
|
import os |
|
|
import torch |
|
|
import gc |
|
|
import time |
|
|
import json |
|
|
import copy |
|
|
import random |
|
|
import requests |
|
|
import re |
|
|
|
|
|
from torch import nn |
|
|
from torch.nn import functional as F |
|
|
from torch.nn.functional import gelu |
|
|
from jinja2.exceptions import TemplateError |
|
|
from peft import LoraConfig |
|
|
from transformers import ( |
|
|
AutoModelForCausalLM, |
|
|
AutoTokenizer, |
|
|
BitsAndBytesConfig, |
|
|
PreTrainedModel, |
|
|
PretrainedConfig, |
|
|
StoppingCriteria, |
|
|
StoppingCriteriaList |
|
|
) |
|
|
from huggingface_hub import hf_hub_download |
|
|
from typing import List, Dict, Any, Optional, Tuple |
|
|
|
|
|
|
|
|
torch.set_printoptions(threshold=float("inf")) |
|
|
os.environ["NCCL_TIMEOUT"] = "5400" |
|
|
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" |
|
|
|
|
|
|
|
|
IGNORE_INDEX = -100 |
|
|
PARAPHRASE_INSTRUCTIONS = [ |
|
|
'Background: {docs} means the same as', |
|
|
"Background: {docs} Can you put the above sentences in your own terms?", |
|
|
"Background: {docs} Please provide a reinterpretation of the preceding background text.", |
|
|
"These two expressions are equivalent in essence:\n(1) {docs}\n(2)", |
|
|
"Background: {docs} is a paraphrase of what?", |
|
|
"Background: {docs} Could you give me a different version of the background sentences above?", |
|
|
"In other words, background: {docs} is just another way of saying:", |
|
|
"You're getting across the same point whether you say background: {docs} or", |
|
|
"Background: {docs} After unpacking the ideas in the background information above, we got:", |
|
|
"Background: {docs} Please offer a restatement of the background sentences I've just read.", |
|
|
"Background: {docs}, which also means:", |
|
|
"Strip away the mystery, and you'll find background: {docs} is simply another rendition of:", |
|
|
"The essence of background: {docs} is captured again in the following statement:", |
|
|
] |
|
|
|
|
|
|
|
|
class StopOnCriteria(StoppingCriteria): |
|
|
"""Custom stopping criteria for generation.""" |
|
|
|
|
|
def __init__(self, tokenizer, stop_strings: List[str] = None, stop_token_ids: List[int] = None): |
|
|
self.tokenizer = tokenizer |
|
|
self.stop_strings = stop_strings or [] |
|
|
self.stop_token_ids = stop_token_ids or [] |
|
|
self.reason = None |
|
|
|
|
|
def __call__(self, input_ids, scores, **kwargs): |
|
|
|
|
|
last_token = input_ids[0, -1].item() |
|
|
if last_token in self.stop_token_ids: |
|
|
self.reason = f"stop_token_{last_token}" |
|
|
return True |
|
|
|
|
|
|
|
|
text = self.tokenizer.decode(input_ids[0], skip_special_tokens=False) |
|
|
for stop_str in self.stop_strings: |
|
|
if stop_str in text: |
|
|
self.reason = f"stop_string_{stop_str}" |
|
|
return True |
|
|
|
|
|
return False |
|
|
|
|
|
|
|
|
class LlamaRMSNorm(nn.Module): |
|
|
"""Llama-style RMS normalization layer.""" |
|
|
|
|
|
def __init__(self, hidden_size: int, eps: float = 1e-6): |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
|
|
|
class Converter(nn.Module): |
|
|
"""Converter module for dimension transformation.""" |
|
|
|
|
|
def __init__(self, input_dim: int, output_dim: int): |
|
|
super().__init__() |
|
|
self.input_dim = input_dim |
|
|
self.output_dim = output_dim |
|
|
|
|
|
self.rms_norm = LlamaRMSNorm(input_dim) |
|
|
self.dense_in = nn.Linear(input_dim, output_dim) |
|
|
self.dense_out = nn.Linear(output_dim, output_dim) |
|
|
|
|
|
self._print_trainable_parameters() |
|
|
|
|
|
def _print_trainable_parameters(self): |
|
|
"""Print parameter statistics.""" |
|
|
trainable_params = sum(p.numel() for p in self.parameters() if p.requires_grad) |
|
|
total_params = sum(p.numel() for p in self.parameters()) |
|
|
print(f"Converter trainable parameters: {trainable_params}, Total parameters: {total_params}") |
|
|
|
|
|
def forward(self, embeddings: torch.Tensor) -> torch.Tensor: |
|
|
embeddings = self.rms_norm(embeddings) |
|
|
x = self.dense_in(embeddings) |
|
|
x = self.dense_out(gelu(x)) |
|
|
return x.to(torch.float32) |
|
|
|
|
|
|
|
|
class CLaRaConfig(PretrainedConfig): |
|
|
"""Configuration class for CLaRa model.""" |
|
|
|
|
|
model_type = "CLaRa" |
|
|
|
|
|
def __init__(self, |
|
|
decoder_model_name: str = "meta-llama/Llama-2-7b-chat-hf", |
|
|
doc_max_length: int = 128, |
|
|
quantization: str = 'no', |
|
|
sep: bool = False, |
|
|
compr_model_name: str = "google-bert/bert-base-uncased", |
|
|
compr_rate: int = 64, |
|
|
compr_n_layers: int = None, |
|
|
compr_every_n_layer: int = None, |
|
|
compr_base_model_name: str = '/mnt/ceph_rbd/model/Mistral-7B-Instruct-v0.2', |
|
|
compr_rms_norm: bool = False, |
|
|
compr_mlp_hidden_dim: int = 8096, |
|
|
compr_use_mlp: bool = True, |
|
|
compr_linear_type: str = "concat", |
|
|
lora: bool = False, |
|
|
lora_compressor: bool = False, |
|
|
training_form: str = "both", |
|
|
training_stage: str = "stage1", |
|
|
generation_top_k: int = 1, |
|
|
lora_r: int = 16, |
|
|
lora_r_compressor: int = None, |
|
|
load_adapters: bool = True, |
|
|
kbtc_training: bool = False, |
|
|
optimize_mem_tokens: bool = False, |
|
|
different_mem_tokens: bool = False, |
|
|
attn_implementation: str = None, |
|
|
_attn_implementation_autoset: bool = True, |
|
|
ae_mode: str = "token", |
|
|
max_new_tokens: int = 128, |
|
|
stage2_retrieval_top_n: int = 1, |
|
|
load_pretrained_checkpoint: bool = False, |
|
|
device_map=None, |
|
|
auto_map: dict = { |
|
|
"AutoConfig": "modeling_clara.CLaRaConfig", |
|
|
"AutoModel": "modeling_clara.CLaRa" |
|
|
}, |
|
|
**kwargs): |
|
|
super().__init__(**kwargs) |
|
|
|
|
|
self.decoder_model_name = decoder_model_name |
|
|
self.doc_max_length = doc_max_length |
|
|
self.quantization = quantization |
|
|
self.sep = sep |
|
|
|
|
|
self.compr_model_name = compr_model_name |
|
|
self.compr_rate = compr_rate |
|
|
self.compr_use_mlp = compr_use_mlp |
|
|
self.compr_mlp_hidden_dim = compr_mlp_hidden_dim |
|
|
self.compr_n_layers = compr_n_layers |
|
|
self.compr_every_n_layer = compr_every_n_layer |
|
|
self.compr_base_model_name = compr_base_model_name |
|
|
self.compr_rms_norm = compr_rms_norm |
|
|
self.compr_linear_type = compr_linear_type |
|
|
|
|
|
self.lora = lora |
|
|
self.lora_compressor = lora_compressor |
|
|
self.training_form = training_form |
|
|
self.lora_r = lora_r |
|
|
self.lora_r_compressor = lora_r_compressor or lora_r |
|
|
self.load_adapters = load_adapters |
|
|
self.optimize_mem_tokens = optimize_mem_tokens |
|
|
self.different_mem_tokens = different_mem_tokens |
|
|
self.kbtc_training = kbtc_training |
|
|
self.training_stage = training_stage |
|
|
self.device_map = device_map |
|
|
self.attn_implementation = attn_implementation |
|
|
self._attn_implementation_autoset = _attn_implementation_autoset |
|
|
self.ae_mode = ae_mode |
|
|
self.max_new_tokens = max_new_tokens |
|
|
self.auto_map = auto_map |
|
|
self.load_pretrained_checkpoint = load_pretrained_checkpoint |
|
|
|
|
|
self.generation_top_k = generation_top_k |
|
|
self.stage2_retrieval_top_n = stage2_retrieval_top_n |
|
|
|
|
|
if training_form == 'compressor': |
|
|
assert compr_model_name is not None and not self.lora |
|
|
|
|
|
|
|
|
|
|
|
def remote_generate(docs: List[str], questions: List[str], api_url: str) -> List[str]: |
|
|
"""Generate responses using remote API.""" |
|
|
response = requests.post( |
|
|
f"{api_url}/generate", |
|
|
json={"docs": docs, "questions": questions} |
|
|
) |
|
|
return response.json()["texts"] |
|
|
|
|
|
|
|
|
def add_memory_tokens_to_inputs(input_ids: torch.Tensor, |
|
|
attention_mask: torch.Tensor, |
|
|
n_mem_tokens: int, |
|
|
tokenizer) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Add memory tokens to input sequences.""" |
|
|
assert len(tokenizer.mem_tokens) == n_mem_tokens |
|
|
|
|
|
mem_tokens = torch.stack([tokenizer.mem_token_ids_pt] * input_ids.size(0), 0) |
|
|
assert len(mem_tokens) == input_ids.size(0) |
|
|
assert len(mem_tokens[0]) == n_mem_tokens |
|
|
|
|
|
input_ids = torch.cat([input_ids, mem_tokens], dim=1) |
|
|
attention_mask = torch.cat([attention_mask, torch.ones(input_ids.size(0), n_mem_tokens)], dim=1) |
|
|
|
|
|
return input_ids, attention_mask |
|
|
|
|
|
|
|
|
def build_pos_mask(pos_index: List[List[int]], N: int, device: torch.device) -> torch.Tensor: |
|
|
"""Build positive mask for retrieval training.""" |
|
|
if isinstance(pos_index, (list, tuple)): |
|
|
B = len(pos_index) |
|
|
mask = torch.zeros(B, N, dtype=torch.bool, device=device) |
|
|
for b, idxs in enumerate(pos_index): |
|
|
if len(idxs) > 0: |
|
|
mask[b, torch.as_tensor(idxs, device=device, dtype=torch.long)] = True |
|
|
return mask |
|
|
else: |
|
|
B, M = pos_index.shape |
|
|
mask = torch.zeros(B, N, dtype=torch.bool, device=device) |
|
|
for m in range(M): |
|
|
col = pos_index[:, m] |
|
|
v = col >= 0 |
|
|
if v.any(): |
|
|
mask[v, col[v]] = True |
|
|
return mask |
|
|
|
|
|
|
|
|
def differentiable_topk_top_1(logits: torch.Tensor, k: int, temperature: float = 1.0) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Implements differentiable top-1 selection using Gumbel-Softmax.""" |
|
|
y = logits / temperature |
|
|
y_soft = F.softmax(y, dim=-1).float() |
|
|
|
|
|
|
|
|
index = y_soft.argmax(dim=-1, keepdim=True) |
|
|
y_hard = torch.zeros_like(y_soft).scatter_(-1, index, 1.0) |
|
|
|
|
|
|
|
|
z = y_hard + y_soft - y_soft.detach() |
|
|
z = z.unsqueeze(1).to(logits.dtype) |
|
|
|
|
|
return z, index |
|
|
|
|
|
|
|
|
def differentiable_topk(logits: torch.Tensor, k: int, temperature: float = 1.0) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Differentiable top-k selection.""" |
|
|
B, N = logits.shape |
|
|
perturbed = logits / max(temperature, 1e-6) |
|
|
|
|
|
|
|
|
topk_vals, topk_idx = perturbed.topk(k, dim=-1) |
|
|
K_hard = torch.zeros(B, k, N, device=logits.device, dtype=logits.dtype) |
|
|
K_hard.scatter_(2, topk_idx.unsqueeze(-1), 1.0) |
|
|
|
|
|
|
|
|
K_soft = torch.zeros_like(K_hard) |
|
|
taken = torch.zeros(B, N, device=logits.device, dtype=logits.dtype) |
|
|
|
|
|
for j in range(k): |
|
|
mask = (1.0 - taken.detach()) |
|
|
masked = perturbed + (mask + 1e-8).log() |
|
|
pj = F.softmax(masked, dim=-1).float() |
|
|
K_soft[:, j, :] = pj |
|
|
taken = torch.clamp(taken + K_hard[:, j, :], max=1.0) |
|
|
|
|
|
|
|
|
W = K_hard + (K_soft - K_soft.detach()) |
|
|
return W, topk_idx |
|
|
|
|
|
|
|
|
class CLaRa(PreTrainedModel): |
|
|
"""CLaRa: Unified Retrieval-Augmented Generation Model.""" |
|
|
|
|
|
config_class = CLaRaConfig |
|
|
|
|
|
def __init__(self, cfg: CLaRaConfig): |
|
|
super().__init__(cfg) |
|
|
self.decoder_model_name = cfg.decoder_model_name |
|
|
self.decoder = self._create_decoder(cfg) |
|
|
self.doc_max_length = cfg.doc_max_length |
|
|
|
|
|
print(f'Base decoder parameters: {self.decoder.num_parameters()}') |
|
|
|
|
|
|
|
|
self.compr_model_name = cfg.compr_model_name |
|
|
self.training_form = cfg.training_form |
|
|
self.lora = cfg.lora |
|
|
self.adapter_keys = [] |
|
|
self.compr = None |
|
|
|
|
|
|
|
|
if cfg.lora and not getattr(cfg, 'pure_inference', False): |
|
|
self._setup_lora_adapters(cfg) |
|
|
|
|
|
print(f'Model adapter keys: {self.adapter_keys}') |
|
|
|
|
|
|
|
|
self.decoder_tokenizer = self._create_decoder_tokenizer(cfg) |
|
|
self.decoder.resize_token_embeddings(len(self.decoder_tokenizer)) |
|
|
self._configure_generation_config() |
|
|
|
|
|
|
|
|
self.generation_top_k = cfg.generation_top_k |
|
|
self.training_stage = cfg.training_stage |
|
|
self.stage2_retrieval_top_n = cfg.stage2_retrieval_top_n |
|
|
self.sep = cfg.sep |
|
|
self.compr_rate = cfg.compr_rate |
|
|
self.local_rank = os.getenv('LOCAL_RANK', '0') |
|
|
|
|
|
self.n_mem_tokens = self.doc_max_length // self.compr_rate |
|
|
self.hidden_size = self.decoder.config.hidden_size |
|
|
|
|
|
|
|
|
if self.lora: |
|
|
self._setup_adapter_training() |
|
|
else: |
|
|
print(f'Total trainable parameters: {self.num_parameters(only_trainable=True)}') |
|
|
|
|
|
self._prepare_mem_tokens_optimization() |
|
|
|
|
|
|
|
|
self.url_retrieval = "http://127.0.0.1:5004/queries" |
|
|
|
|
|
def _create_decoder(self, cfg: CLaRaConfig) -> AutoModelForCausalLM: |
|
|
"""Create and configure the decoder model.""" |
|
|
if not torch.cuda.is_available(): |
|
|
return AutoModelForCausalLM.from_pretrained( |
|
|
cfg.decoder_model_name, |
|
|
torch_dtype=torch.bfloat16, |
|
|
resume_download=True, |
|
|
trust_remote_code=True, |
|
|
device_map=cfg.device_map |
|
|
) |
|
|
|
|
|
if cfg.quantization == "no": |
|
|
return AutoModelForCausalLM.from_pretrained( |
|
|
cfg.decoder_model_name, |
|
|
torch_dtype=torch.bfloat16, |
|
|
attn_implementation=cfg.attn_implementation, |
|
|
device_map=cfg.device_map |
|
|
) |
|
|
elif cfg.quantization == "int4": |
|
|
quant_config = BitsAndBytesConfig( |
|
|
load_in_4bit=True, |
|
|
bnb_4bit_quant_type='nf4', |
|
|
bnb_4bit_compute_dtype='bfloat16', |
|
|
) |
|
|
return AutoModelForCausalLM.from_pretrained( |
|
|
cfg.decoder_model_name, |
|
|
quantization_config=quant_config, |
|
|
attn_implementation=cfg.attn_implementation, |
|
|
torch_dtype=torch.bfloat16, |
|
|
resume_download=True, |
|
|
trust_remote_code=True, |
|
|
device_map=cfg.device_map |
|
|
) |
|
|
elif cfg.quantization == "int8": |
|
|
quant_config = BitsAndBytesConfig( |
|
|
load_in_8bit=True, |
|
|
llm_int8_enable_fp32_cpu_offload=True, |
|
|
bnb_4bit_compute_dtype='bfloat16', |
|
|
) |
|
|
return AutoModelForCausalLM.from_pretrained( |
|
|
cfg.decoder_model_name, |
|
|
quantization_config=quant_config, |
|
|
attn_implementation=cfg.attn_implementation, |
|
|
torch_dtype=torch.bfloat16, |
|
|
resume_download=True, |
|
|
trust_remote_code=True, |
|
|
device_map=cfg.device_map |
|
|
) |
|
|
else: |
|
|
raise NotImplementedError(f"Quantization {cfg.quantization} not supported") |
|
|
|
|
|
def _setup_lora_adapters(self, cfg: CLaRaConfig): |
|
|
"""Setup LoRA adapters based on training stage.""" |
|
|
peft_config = self._get_peft_config(lora_r=cfg.lora_r) |
|
|
|
|
|
if cfg.training_stage == "stage1" and cfg.load_adapters: |
|
|
print('Loading encoder and decoder adapter for stage1') |
|
|
self.decoder.add_adapter(peft_config, 'decoder_adapter') |
|
|
self.adapter_keys.append('decoder_adapter') |
|
|
self.decoder.add_adapter(peft_config, 'encoder_adapter') |
|
|
self.adapter_keys.append('encoder_adapter') |
|
|
elif cfg.training_stage == "stage2" and cfg.load_adapters: |
|
|
if 'decoder_adapter' not in self.adapter_keys: |
|
|
self.decoder.add_adapter(peft_config, 'decoder_adapter') |
|
|
self.adapter_keys.append('decoder_adapter') |
|
|
if 'query_reasoner_adapter' not in self.adapter_keys: |
|
|
self.decoder.add_adapter(peft_config, 'query_reasoner_adapter') |
|
|
self.adapter_keys.append('query_reasoner_adapter') |
|
|
elif cfg.training_stage == 'stage1_2': |
|
|
if not cfg.load_adapters: |
|
|
print('Loading decoder adapter for stage1_2') |
|
|
self.decoder.add_adapter(peft_config, 'decoder_adapter') |
|
|
self.adapter_keys.append('decoder_adapter') |
|
|
elif cfg.load_adapters: |
|
|
print('Loading encoder and decoder adapter for stage1_2') |
|
|
self.decoder.add_adapter(peft_config, 'encoder_adapter') |
|
|
self.adapter_keys.append('encoder_adapter') |
|
|
self.decoder.add_adapter(peft_config, 'decoder_adapter') |
|
|
self.adapter_keys.append('decoder_adapter') |
|
|
elif cfg.training_stage == 'stage2_reasoning': |
|
|
if not cfg.load_adapters: |
|
|
print('Loading decoder adapter for stage2_reasoning') |
|
|
self.decoder.add_adapter(peft_config, 'decoder_adapter') |
|
|
self.adapter_keys.append('decoder_adapter') |
|
|
|
|
|
def _setup_adapter_training(self): |
|
|
"""Setup adapters for training.""" |
|
|
for adapter_key in self.adapter_keys: |
|
|
self.decoder.set_adapter(adapter_key) |
|
|
print(f'Adapter {adapter_key} trainable parameters: {self.num_parameters(only_trainable=True)}') |
|
|
self._set_all_adapters() |
|
|
|
|
|
def _configure_generation_config(self): |
|
|
"""Configure generation parameters.""" |
|
|
self.decoder.generation_config.top_p = None |
|
|
self.decoder.generation_config.temperature = None |
|
|
self.decoder.generation_config.pad_token_id = self.decoder_tokenizer.pad_token_id |
|
|
|
|
|
@staticmethod |
|
|
def _create_decoder_tokenizer(cfg: CLaRaConfig) -> AutoTokenizer: |
|
|
"""Create and configure the decoder tokenizer.""" |
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
|
cfg.decoder_model_name, |
|
|
use_fast=True, |
|
|
padding_side='left' |
|
|
) |
|
|
|
|
|
|
|
|
n_mem_tokens = cfg.doc_max_length // cfg.compr_rate |
|
|
existing_special_tokens = tokenizer.special_tokens_map.get("additional_special_tokens", []) |
|
|
|
|
|
if cfg.different_mem_tokens: |
|
|
mem_tokens = [f'<MEM{i}>' for i in range(n_mem_tokens)] |
|
|
tokenizer.add_special_tokens({ |
|
|
'additional_special_tokens': existing_special_tokens + mem_tokens + ['<AE>', '<ENC>', '<SEP>'] |
|
|
}) |
|
|
tokenizer.mem_tokens = mem_tokens |
|
|
else: |
|
|
tokenizer.add_special_tokens({ |
|
|
'additional_special_tokens': existing_special_tokens + ['<MEM>', '<AE>', '<ENC>', '<SEP>'] |
|
|
}) |
|
|
tokenizer.mem_tokens = ['<MEM>'] * n_mem_tokens |
|
|
|
|
|
tokenizer.mem_token_ids = [tokenizer.convert_tokens_to_ids(token) for token in tokenizer.mem_tokens] |
|
|
tokenizer.mem_token_ids_pt = torch.LongTensor(tokenizer.mem_token_ids) |
|
|
|
|
|
|
|
|
tokenizer.ae_token = '<AE>' |
|
|
tokenizer.ae_token_id = tokenizer.convert_tokens_to_ids('<AE>') |
|
|
tokenizer.enc_token = '<ENC>' |
|
|
tokenizer.sep_token = '<SEP>' |
|
|
tokenizer.sep_token_id = tokenizer.convert_tokens_to_ids('<SEP>') |
|
|
|
|
|
|
|
|
if tokenizer.bos_token is None and 'qwen' in cfg.decoder_model_name.lower(): |
|
|
tokenizer.bos_token = tokenizer.special_tokens_map['additional_special_tokens'][0] |
|
|
tokenizer.bos_token_id = tokenizer.convert_tokens_to_ids(tokenizer.bos_token) |
|
|
|
|
|
if tokenizer.eos_token is None and "qwen" in cfg.decoder_model_name.lower(): |
|
|
tokenizer.eos_token = tokenizer.special_tokens_map['additional_special_tokens'][1] |
|
|
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids(tokenizer.eos_token) |
|
|
|
|
|
|
|
|
if cfg.kbtc_training: |
|
|
tokenizer.add_special_tokens({'additional_special_tokens': ['<KBTC>']}) |
|
|
tokenizer.kbtc_token = '<KBTC>' |
|
|
tokenizer.kbtc_token_id = tokenizer.convert_tokens_to_ids('<KBTC>') |
|
|
|
|
|
|
|
|
if tokenizer.pad_token_id is None: |
|
|
tokenizer.pad_token_id = tokenizer.bos_token_id |
|
|
|
|
|
print(f'Memory token count: {n_mem_tokens}') |
|
|
return tokenizer |
|
|
|
|
|
def _get_peft_config(self, lora_r: int) -> LoraConfig: |
|
|
"""Build the PEFT configuration.""" |
|
|
return LoraConfig( |
|
|
task_type="CAUSAL_LM", |
|
|
r=lora_r, |
|
|
lora_alpha=2*lora_r, |
|
|
target_modules='all-linear', |
|
|
lora_dropout=0.1 |
|
|
) |
|
|
|
|
|
def _prepare_mem_tokens_optimization(self): |
|
|
"""Setup memory token optimization if enabled.""" |
|
|
if self.config.optimize_mem_tokens and self.compr is None: |
|
|
|
|
|
self.decoder.get_input_embeddings().weight.requires_grad = True |
|
|
|
|
|
|
|
|
def hook(grad): |
|
|
mask = torch.zeros_like(grad) |
|
|
mask[self.decoder_tokenizer.mem_token_ids] = 1.0 |
|
|
return grad * mask |
|
|
|
|
|
self.decoder.get_input_embeddings().weight.register_hook(hook) |
|
|
|
|
|
def _set_all_adapters(self): |
|
|
"""Activate all adapters for training.""" |
|
|
if len(self.adapter_keys) > 0: |
|
|
self.decoder.set_adapter(self.adapter_keys) |
|
|
|
|
|
|
|
|
def compress(self, enc_input_ids: torch.Tensor, enc_attention_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Compress input documents.""" |
|
|
if self.compr: |
|
|
return self.compr(enc_input_ids, enc_attention_mask) |
|
|
else: |
|
|
return self._compr_decoder(enc_input_ids, enc_attention_mask) |
|
|
|
|
|
def _compr_decoder(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Use decoder as compressor.""" |
|
|
assert input_ids.size() == attention_mask.size() |
|
|
|
|
|
if 'encoder_adapter' in self.adapter_keys: |
|
|
self.decoder.set_adapter('encoder_adapter') |
|
|
else: |
|
|
raise ValueError(f"encoder_adapter not in adapter_keys: {self.adapter_keys}") |
|
|
|
|
|
|
|
|
emb = self.decoder( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
output_hidden_states=True |
|
|
).hidden_states[-1] |
|
|
|
|
|
|
|
|
mask = torch.isin( |
|
|
input_ids, |
|
|
self.decoder_tokenizer.mem_token_ids_pt.to(input_ids.device) |
|
|
) |
|
|
|
|
|
|
|
|
attn = attention_mask.bool() |
|
|
mem_mask = mask & attn |
|
|
non_mem_mask = (~mask) & attn |
|
|
|
|
|
mem_len = mem_mask.sum(dim=1) |
|
|
non_mem_len = non_mem_mask.sum(dim=1) |
|
|
|
|
|
if (mem_len == 0).any(): |
|
|
raise ValueError("Some samples have no memory tokens") |
|
|
if (non_mem_len == 0).any(): |
|
|
raise ValueError("Some samples have no non-memory tokens") |
|
|
|
|
|
mem_sum = (emb * mem_mask.unsqueeze(-1)).sum(dim=1) |
|
|
non_mem_sum = (emb * non_mem_mask.unsqueeze(-1)).sum(dim=1) |
|
|
|
|
|
mem_mean = mem_sum / mem_len.unsqueeze(-1) |
|
|
non_mem_mean = non_mem_sum / non_mem_len.unsqueeze(-1) |
|
|
|
|
|
mse_loss = F.mse_loss(non_mem_mean, mem_mean, reduction='mean') |
|
|
|
|
|
return emb[mask].reshape(emb.size(0), -1, emb.size(-1)), mse_loss |
|
|
|
|
|
def _compr_query_reasoner_stage2(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor: |
|
|
"""Query reasoning compression for stage 2.""" |
|
|
assert input_ids.size() == attention_mask.size() |
|
|
|
|
|
if 'query_reasoner_adapter' in self.adapter_keys: |
|
|
self.decoder.set_adapter('query_reasoner_adapter') |
|
|
else: |
|
|
raise ValueError(f"query_reasoner_adapter not in adapter_keys: {self.adapter_keys}") |
|
|
|
|
|
emb = self.decoder( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
output_hidden_states=True |
|
|
).hidden_states[-1] |
|
|
|
|
|
mask = torch.isin( |
|
|
input_ids, |
|
|
self.decoder_tokenizer.mem_token_ids_pt.to(input_ids.device) |
|
|
) |
|
|
|
|
|
return emb[mask].reshape(emb.size(0), -1) |
|
|
|
|
|
|
|
|
def generate_from_questions(self, |
|
|
questions: List[str], |
|
|
max_new_tokens: int = 128, |
|
|
temperature: float = 0.5, |
|
|
documents: List[List[str]] = None, |
|
|
stage2_mips: bool = False, |
|
|
stage2_retrieval_top_n: int = None, |
|
|
time_count: bool = False) -> Tuple[List[str], torch.Tensor]: |
|
|
"""Generate answers from questions using query reasoning.""" |
|
|
if "query_reasoner_adapter" not in self.adapter_keys: |
|
|
raise ValueError("Query reasoner adapter not found") |
|
|
|
|
|
self.eval() |
|
|
|
|
|
with torch.no_grad(): |
|
|
|
|
|
self.decoder.set_adapter('query_reasoner_adapter') |
|
|
flat_questions = [q for q in questions] |
|
|
|
|
|
if time_count: |
|
|
start_time = time.time() |
|
|
|
|
|
q_tok = self._prepare_encoder_inputs(flat_questions, max_length=self.doc_max_length) |
|
|
query_reps = self._compr_query_reasoner_stage2( |
|
|
q_tok["input_ids"].to(self.decoder.device), |
|
|
q_tok["attention_mask"].to(self.decoder.device) |
|
|
) |
|
|
|
|
|
|
|
|
if stage2_mips: |
|
|
retrieved_doc_embeddings = self._retrieve_embeddings( |
|
|
query_reps, stage2_retrieval_top_n=stage2_retrieval_top_n |
|
|
) |
|
|
scores = torch.bmm( |
|
|
query_reps.unsqueeze(1), |
|
|
retrieved_doc_embeddings.transpose(1, 2) |
|
|
).squeeze(1) |
|
|
z, topk_idx = differentiable_topk(scores, self.generation_top_k, temperature=0.5) |
|
|
selected_doc_embeddings = torch.einsum('bkn,bnd->bkd', z, retrieved_doc_embeddings) |
|
|
selected_doc_embeddings = selected_doc_embeddings.view( |
|
|
selected_doc_embeddings.size(0) * selected_doc_embeddings.size(1), |
|
|
-1, self.hidden_size |
|
|
) |
|
|
else: |
|
|
|
|
|
flat_documents = sum(documents, []) |
|
|
|
|
|
if time_count: |
|
|
start_time1 = time.time() |
|
|
|
|
|
input_encoder = self._prepare_encoder_inputs(flat_documents, max_length=self.doc_max_length) |
|
|
device = self.decoder.device |
|
|
enc_input_ids = input_encoder['input_ids'].to(device) |
|
|
enc_attention_mask = input_encoder['attention_mask'].to(device) |
|
|
retrieved_doc_embeddings, _ = self.compress(enc_input_ids, enc_attention_mask) |
|
|
|
|
|
if time_count: |
|
|
start_time2 = time.time() |
|
|
compress_time = start_time2 - start_time1 |
|
|
|
|
|
B = len(questions) |
|
|
stage2_retrieval_top_n = retrieved_doc_embeddings.shape[0] // B |
|
|
retrieved_doc_embeddings = retrieved_doc_embeddings.reshape(B, stage2_retrieval_top_n, -1) |
|
|
query_reps = query_reps.to(retrieved_doc_embeddings.dtype) |
|
|
|
|
|
if time_count: |
|
|
start_time3 = time.time() |
|
|
|
|
|
scores = torch.bmm( |
|
|
F.normalize(query_reps, dim=-1, p=2).unsqueeze(1).float(), |
|
|
F.normalize(retrieved_doc_embeddings, dim=-1, p=2).float().transpose(1, 2) |
|
|
).squeeze(1) |
|
|
|
|
|
z, topk_idx = differentiable_topk(scores, self.generation_top_k, temperature=0.02) |
|
|
selected_doc_embeddings = torch.einsum('bkn,bnd->bkd', z.to(retrieved_doc_embeddings.dtype), retrieved_doc_embeddings) |
|
|
selected_doc_embeddings = selected_doc_embeddings.view( |
|
|
selected_doc_embeddings.size(0) * selected_doc_embeddings.size(1), |
|
|
-1, self.hidden_size |
|
|
) |
|
|
|
|
|
if time_count: |
|
|
start_time4 = time.time() |
|
|
query_time = start_time4 - start_time3 + start_time1 - start_time |
|
|
|
|
|
|
|
|
if time_count: |
|
|
start_time5 = time.time() |
|
|
|
|
|
instructions = [ |
|
|
self._blend_prompt_and_selected_memory_tokens(query=q)[1] |
|
|
for q in questions |
|
|
] |
|
|
|
|
|
decoder_inputs = self.decoder_tokenizer( |
|
|
instructions, |
|
|
return_tensors='pt', |
|
|
padding="longest", |
|
|
add_special_tokens=False, |
|
|
truncation=True, |
|
|
max_length=1024, |
|
|
) |
|
|
|
|
|
dec_input_ids = decoder_inputs['input_ids'].to(self.decoder.device) |
|
|
dec_attention_mask = decoder_inputs['attention_mask'].to(self.decoder.device) |
|
|
|
|
|
|
|
|
inputs_embeds = self._replace_emb_stage2(selected_doc_embeddings, dec_input_ids) |
|
|
|
|
|
|
|
|
if 'decoder_adapter' in self.adapter_keys: |
|
|
self.decoder.set_adapter('decoder_adapter') |
|
|
|
|
|
|
|
|
output_ids = self.decoder.generate( |
|
|
inputs_embeds=inputs_embeds, |
|
|
attention_mask=dec_attention_mask, |
|
|
do_sample=False, |
|
|
top_p=None, |
|
|
temperature=None, |
|
|
max_new_tokens=max_new_tokens, |
|
|
pad_token_id=self.decoder_tokenizer.pad_token_id |
|
|
) |
|
|
|
|
|
if time_count: |
|
|
start_time6 = time.time() |
|
|
generate_time = start_time6 - start_time5 |
|
|
|
|
|
|
|
|
decoded = self.decoder_tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
|
|
|
|
if time_count: |
|
|
return decoded, topk_idx, compress_time, query_time, generate_time, compress_time + query_time + generate_time |
|
|
else: |
|
|
return decoded, topk_idx |
|
|
def generate_from_paraphrase(self, questions: list[str], documents: list[list[str]], max_new_tokens: int = 128) -> list[str]: |
|
|
""" |
|
|
Generates answers from documents (via compression then decoding) |
|
|
questions: list of string |
|
|
documents: list of list of strings (they should all be of equal length: the nb of doc for each question) |
|
|
""" |
|
|
self.generation_top_k = len(documents[0]) |
|
|
assert len(documents) == len(questions) |
|
|
assert all([len(context) == len(documents[0]) for context in documents]) |
|
|
flat_documents = sum(documents, []) |
|
|
|
|
|
model_input = {} |
|
|
|
|
|
|
|
|
input_encoder = self._prepare_encoder_inputs(flat_documents, max_length=self.doc_max_length) |
|
|
device = self.decoder.device |
|
|
model_input['enc_input_ids'], model_input['enc_attention_mask'] = input_encoder['input_ids'].to(device), input_encoder['attention_mask'].to(device) |
|
|
|
|
|
|
|
|
instr = [self._blend_prompt_and_memory_tokens(query="", stage = "stage1", paraphrase_loss = True) for q in questions] |
|
|
inp_dec = self.decoder_tokenizer(instr, return_tensors='pt', padding="longest", add_special_tokens=False, truncation=True, max_length=1024) |
|
|
model_input['dec_input_ids'], model_input['dec_attention_mask'] = inp_dec['input_ids'].to(device), inp_dec['attention_mask'].to(device) |
|
|
|
|
|
|
|
|
return self._generate(model_input, max_new_tokens=max_new_tokens) |
|
|
|
|
|
|
|
|
def generate_from_text(self, |
|
|
questions: List[str], |
|
|
documents: List[List[str]], |
|
|
max_new_tokens: int = 128) -> List[str]: |
|
|
"""Generate answers from documents via compression then decoding.""" |
|
|
self.generation_top_k = len(documents[0]) |
|
|
assert len(documents) == len(questions) |
|
|
assert all(len(context) == len(documents[0]) for context in documents) |
|
|
|
|
|
flat_documents = sum(documents, []) |
|
|
|
|
|
|
|
|
input_encoder = self._prepare_encoder_inputs(flat_documents, max_length=self.doc_max_length) |
|
|
device = self.decoder.device |
|
|
enc_input_ids = input_encoder['input_ids'].to(device) |
|
|
enc_attention_mask = input_encoder['attention_mask'].to(device) |
|
|
|
|
|
|
|
|
instructions = [self._blend_prompt_and_memory_tokens(query=q, stage="stage1_2") for q in questions] |
|
|
inp_dec = self.decoder_tokenizer( |
|
|
instructions, |
|
|
return_tensors='pt', |
|
|
padding="longest", |
|
|
add_special_tokens=False, |
|
|
truncation=True, |
|
|
max_length=1024 |
|
|
) |
|
|
dec_input_ids = inp_dec['input_ids'].to(device) |
|
|
dec_attention_mask = inp_dec['attention_mask'].to(device) |
|
|
|
|
|
|
|
|
return self._generate({ |
|
|
'enc_input_ids': enc_input_ids, |
|
|
'enc_attention_mask': enc_attention_mask, |
|
|
'dec_input_ids': dec_input_ids, |
|
|
'dec_attention_mask': dec_attention_mask |
|
|
}, max_new_tokens=max_new_tokens) |
|
|
|
|
|
def generate_from_compressed_documents_and_questions(self, |
|
|
questions: List[str], |
|
|
compressed_documents: torch.Tensor, |
|
|
max_new_tokens: int = 128) -> List[str]: |
|
|
"""Generate answers from compressed documents.""" |
|
|
self.generation_top_k = compressed_documents.size(0) // len(questions) |
|
|
assert compressed_documents.size(0) % self.generation_top_k == 0 |
|
|
|
|
|
|
|
|
instructions = [self._blend_prompt_and_memory_tokens(query=q, stage="stage1_2") for q in questions] |
|
|
inp_dec = self.decoder_tokenizer( |
|
|
instructions, |
|
|
return_tensors='pt', |
|
|
padding="longest", |
|
|
add_special_tokens=False, |
|
|
truncation=True, |
|
|
max_length=1024 |
|
|
) |
|
|
device = self.decoder.device |
|
|
dec_input_ids = inp_dec['input_ids'].to(device) |
|
|
dec_attention_mask = inp_dec['attention_mask'].to(device) |
|
|
|
|
|
|
|
|
inputs_embeds = self._replace_emb(compressed_documents, dec_input_ids) |
|
|
|
|
|
|
|
|
if 'decoder_adapter' in self.adapter_keys: |
|
|
self.decoder.set_adapter('decoder_adapter') |
|
|
|
|
|
output_ids = self.decoder.generate( |
|
|
inputs_embeds=inputs_embeds, |
|
|
attention_mask=dec_attention_mask, |
|
|
max_new_tokens=max_new_tokens |
|
|
) |
|
|
|
|
|
return self.decoder_tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
|
|
|
|
def compress_documents(self, documents: List[str]) -> torch.Tensor: |
|
|
"""Compress a list of documents.""" |
|
|
input_encoder = self._prepare_encoder_inputs(documents, max_length=self.doc_max_length) |
|
|
enc_input_ids = input_encoder['input_ids'].to(self.decoder.device) |
|
|
attention_mask = input_encoder['attention_mask'].to(self.decoder.device) |
|
|
return self.compress(enc_input_ids=enc_input_ids, enc_attention_mask=attention_mask) |
|
|
|
|
|
|
|
|
def _prepare_encoder_inputs(self, texts: List[str], max_length: int, q_texts: List[str] = None) -> Dict[str, torch.Tensor]: |
|
|
"""Create inputs for the encoder.""" |
|
|
if q_texts is not None: |
|
|
assert len(texts) == len(q_texts) |
|
|
|
|
|
if self.compr is None: |
|
|
return self._prepare_encoder_inputs_to_decoder(texts, max_length, q_texts) |
|
|
else: |
|
|
return self.compr.prepare_inputs(texts, max_length, q_texts) |
|
|
|
|
|
def _prepare_encoder_inputs_to_decoder(self, texts: List[str], max_length: int, q_texts: List[str] = None) -> Dict[str, torch.Tensor]: |
|
|
"""Prepare encoder inputs when using decoder as compressor.""" |
|
|
if q_texts is not None: |
|
|
texts_to_encode = [ |
|
|
self.decoder_tokenizer.enc_token + |
|
|
self.decoder_tokenizer.bos_token + |
|
|
'\nQuery:\n' + query + |
|
|
'Document:\n' + text + |
|
|
self.decoder_tokenizer.eos_token |
|
|
for text, query in zip(texts, q_texts) |
|
|
] |
|
|
inp_enc = self.decoder_tokenizer( |
|
|
texts_to_encode, |
|
|
return_tensors='pt', |
|
|
padding='max_length', |
|
|
max_length=max_length + 8, |
|
|
truncation=True, |
|
|
add_special_tokens=False |
|
|
) |
|
|
else: |
|
|
inp_enc = [ |
|
|
self.decoder_tokenizer.enc_token + |
|
|
self.decoder_tokenizer.bos_token + |
|
|
text + |
|
|
self.decoder_tokenizer.eos_token |
|
|
for text in texts |
|
|
] |
|
|
inp_enc = self.decoder_tokenizer( |
|
|
inp_enc, |
|
|
return_tensors='pt', |
|
|
padding="max_length", |
|
|
max_length=max_length + 3, |
|
|
truncation=True, |
|
|
add_special_tokens=False |
|
|
) |
|
|
|
|
|
num_mem_tokens = self.doc_max_length // self.compr_rate |
|
|
assert num_mem_tokens == len(self.decoder_tokenizer.mem_tokens) |
|
|
|
|
|
inp_enc['input_ids'], inp_enc['attention_mask'] = add_memory_tokens_to_inputs( |
|
|
inp_enc['input_ids'], |
|
|
inp_enc['attention_mask'], |
|
|
num_mem_tokens, |
|
|
tokenizer=self.decoder_tokenizer |
|
|
) |
|
|
|
|
|
return inp_enc |
|
|
|
|
|
def _replace_emb(self, compressed_embs: torch.Tensor, dec_input_ids: torch.Tensor) -> torch.Tensor: |
|
|
"""Replace memory tokens in decoder input with compressed embeddings.""" |
|
|
indices = range(0, compressed_embs.size(0) + 1, self.generation_top_k) |
|
|
return self._replace_embeddings(compressed_embs, dec_input_ids, indices) |
|
|
|
|
|
def _replace_emb_stage2(self, compressed_embs: torch.Tensor, dec_input_ids: torch.Tensor) -> torch.Tensor: |
|
|
"""Replace memory tokens for stage 2.""" |
|
|
indices = range(0, compressed_embs.size(0) + 1, self.generation_top_k) |
|
|
return self._replace_embeddings(compressed_embs, dec_input_ids, indices) |
|
|
|
|
|
def _replace_embeddings(self, compressed_embs: torch.Tensor, dec_input_ids: torch.Tensor, indices: range) -> torch.Tensor: |
|
|
"""Replace memory tokens with compressed embeddings.""" |
|
|
inputs_embeds = self.decoder.get_input_embeddings()(dec_input_ids) |
|
|
num_embs = compressed_embs.size(1) |
|
|
slot_len = num_embs + (1 if self.sep else 0) |
|
|
|
|
|
|
|
|
first_mem_token_indices = torch.argmax( |
|
|
(dec_input_ids == self.decoder_tokenizer.mem_token_ids[0]).int(), dim=1 |
|
|
) |
|
|
batch_size = inputs_embeds.size(0) |
|
|
|
|
|
|
|
|
for i in range(batch_size): |
|
|
for j in range(indices[i], indices[i + 1]): |
|
|
start_idx = first_mem_token_indices[i].item() + (j - indices[i]) * slot_len |
|
|
assert inputs_embeds[i, start_idx:start_idx + num_embs, :].size() == compressed_embs[j].size() |
|
|
inputs_embeds[i, start_idx:start_idx + num_embs, :] = compressed_embs[j] |
|
|
|
|
|
return inputs_embeds |
|
|
|
|
|
def _retrieve_embeddings(self, questions: torch.Tensor, stage2_retrieval_top_n: int = 1) -> torch.Tensor: |
|
|
"""Retrieve embeddings of documents.""" |
|
|
response = requests.post( |
|
|
self.url_retrieval, |
|
|
json={ |
|
|
"queries": questions.detach().cpu().float().numpy().tolist(), |
|
|
'k': self.generation_top_k |
|
|
} |
|
|
) |
|
|
|
|
|
if response.status_code != 200: |
|
|
raise Exception(f"Error: {response.status_code} - {response.text}") |
|
|
|
|
|
results = response.json() |
|
|
retrieval_embeddings = results['retrieved_embeddings'] |
|
|
retrieval_embeddings = torch.tensor( |
|
|
retrieval_embeddings, |
|
|
dtype=torch.bfloat16, |
|
|
device=questions.device |
|
|
) |
|
|
|
|
|
if len(retrieval_embeddings.shape) == 4: |
|
|
retrieval_embeddings = retrieval_embeddings.reshape( |
|
|
retrieval_embeddings.shape[0] * retrieval_embeddings.shape[1], |
|
|
retrieval_embeddings.shape[2], -1 |
|
|
) |
|
|
|
|
|
return retrieval_embeddings |
|
|
|
|
|
def _blend_prompt_and_memory_tokens(self, query: str, answer: str = None, qa_loss: bool = False, |
|
|
paraphrase_loss: bool = False, stage: str = "stage1") -> Tuple[int, str]: |
|
|
"""Blend prompt with memory tokens for different training stages.""" |
|
|
mem_tokens_str = ''.join(self.decoder_tokenizer.mem_tokens) + self.decoder_tokenizer.sep_token |
|
|
docs = mem_tokens_str * self.generation_top_k |
|
|
|
|
|
if stage == "stage1": |
|
|
if qa_loss: |
|
|
return self._blend_qa_prompt(docs, query, answer) |
|
|
elif paraphrase_loss: |
|
|
return self._blend_paraphrase_prompt(docs, answer) |
|
|
elif stage == "stage1_2": |
|
|
return self._blend_standard_prompt(docs, query, answer) |
|
|
|
|
|
raise ValueError(f"Unknown stage: {stage}") |
|
|
|
|
|
def _blend_qa_prompt(self, docs: str, query: List[str], answer: List[str]) -> Tuple[int, str]: |
|
|
"""Create QA prompt for stage 1.""" |
|
|
prompt_system = 'You are a helpful assistant. Given a document, your task is to generate some single questions to cover all key information of the document and answer them sequentially.' |
|
|
prompt_user = f"Background:\n{docs}" |
|
|
|
|
|
sys_prompt = [{"role": "system", "content": prompt_system}] |
|
|
user_prompt = [{"role": "user", "content": prompt_user.replace(':\ ', ': ')}] |
|
|
|
|
|
qa_lines = [f"Question: {q}\nAnswer: {a}" for q, a in zip(query, answer)] |
|
|
query_answer = "\n".join(qa_lines) |
|
|
assistant_prompt = [{"role": "assistant", "content": query_answer}] |
|
|
|
|
|
try: |
|
|
prompt = self.decoder_tokenizer.apply_chat_template( |
|
|
sys_prompt + user_prompt, |
|
|
tokenize=False, |
|
|
add_generation_prompt=True, |
|
|
enable_thinking=False |
|
|
) |
|
|
response = self.decoder_tokenizer.apply_chat_template( |
|
|
sys_prompt + user_prompt + assistant_prompt, |
|
|
tokenize=False, |
|
|
add_generation_prompt=False, |
|
|
enable_thinking=False |
|
|
) |
|
|
prompt_len = len(self.decoder_tokenizer.encode(prompt, add_special_tokens=False)) |
|
|
except TemplateError as e: |
|
|
if "System role not supported" in str(e): |
|
|
messages = [{"role": "user", "content": sys_prompt[0]['content'] + '\n' + user_prompt[0]['content']}] |
|
|
prompt = self.decoder_tokenizer.apply_chat_template( |
|
|
messages, tokenize=False, add_generation_prompt=True, enable_thinking=False |
|
|
) |
|
|
prompt_len = len(self.decoder_tokenizer.encode(prompt, add_special_tokens=False)) |
|
|
|
|
|
messages_with_answer = messages + assistant_prompt |
|
|
response = self.decoder_tokenizer.apply_chat_template( |
|
|
messages_with_answer, tokenize=False, add_generation_prompt=False, enable_thinking=False |
|
|
) |
|
|
else: |
|
|
raise e |
|
|
|
|
|
return prompt_len, response |
|
|
|
|
|
def _blend_paraphrase_prompt(self, docs: str, answer: str) -> Tuple[int, str]: |
|
|
"""Create paraphrase prompt for stage 1.""" |
|
|
prompt_system = 'You are a helpful assistant. Your task is follow the instructions to paraphrase the background information.' |
|
|
prompt_user = random.choice(PARAPHRASE_INSTRUCTIONS).format(docs=docs) |
|
|
|
|
|
sys_prompt = [{"role": "system", "content": prompt_system}] |
|
|
user_prompt = [{"role": "user", "content": prompt_user.replace(':\ ', ': ')}] |
|
|
|
|
|
try: |
|
|
prompt = self.decoder_tokenizer.apply_chat_template( |
|
|
sys_prompt + user_prompt, |
|
|
tokenize=False, |
|
|
add_generation_prompt=True, |
|
|
enable_thinking=False |
|
|
) |
|
|
if answer is None: |
|
|
return prompt |
|
|
|
|
|
assistant_prompt = [{"role": "assistant", "content": answer}] |
|
|
response = self.decoder_tokenizer.apply_chat_template( |
|
|
sys_prompt + user_prompt + assistant_prompt, |
|
|
tokenize=False, |
|
|
add_generation_prompt=False, |
|
|
enable_thinking=False |
|
|
) |
|
|
prompt_len = len(self.decoder_tokenizer.encode(prompt, add_special_tokens=False)) |
|
|
except TemplateError as e: |
|
|
if "System role not supported" in str(e): |
|
|
combined_content = prompt_system + '\n' + prompt_user.replace(':\ ', ': ') |
|
|
messages = [{"role": "user", "content": combined_content}] |
|
|
prompt = self.decoder_tokenizer.apply_chat_template( |
|
|
messages, tokenize=False, add_generation_prompt=True, enable_thinking=False |
|
|
) |
|
|
if answer is None: |
|
|
return prompt |
|
|
prompt_len = len(self.decoder_tokenizer.encode(prompt, add_special_tokens=False)) |
|
|
messages_with_answer = messages + [{"role": "assistant", "content": answer}] |
|
|
response = self.decoder_tokenizer.apply_chat_template( |
|
|
messages_with_answer, tokenize=False, add_generation_prompt=False, enable_thinking=False |
|
|
) |
|
|
else: |
|
|
raise e |
|
|
|
|
|
return prompt_len, response |
|
|
|
|
|
def _blend_standard_prompt(self, docs: str, query: str, answer: str) -> Tuple[int, str]: |
|
|
"""Create standard prompt for stage 1_2.""" |
|
|
prompt_system = 'You are a helpful assistant. Your task is to extract relevant information from provided documents and to answer to questions as briefly as possible.' |
|
|
prompt_user = f"Background:\n{docs}\n\nQuestion:{query}" |
|
|
|
|
|
sys_prompt = [{"role": "system", "content": prompt_system}] |
|
|
user_prompt = [{"role": "user", "content": prompt_user.replace(':\ ', ': ')}] |
|
|
|
|
|
try: |
|
|
prompt = self.decoder_tokenizer.apply_chat_template( |
|
|
sys_prompt + user_prompt, |
|
|
tokenize=False, |
|
|
add_generation_prompt=True, |
|
|
enable_thinking=False |
|
|
) |
|
|
if answer is None: |
|
|
return prompt |
|
|
|
|
|
assistant_prompt = [{"role": "assistant", "content": answer}] |
|
|
response = self.decoder_tokenizer.apply_chat_template( |
|
|
sys_prompt + user_prompt + assistant_prompt, |
|
|
tokenize=False, |
|
|
add_generation_prompt=False, |
|
|
enable_thinking=False |
|
|
) |
|
|
prompt_len = len(self.decoder_tokenizer.encode(prompt, add_special_tokens=False)) |
|
|
except TemplateError as e: |
|
|
if "System role not supported" in str(e): |
|
|
combined_content = prompt_system + '\n' + prompt_user.replace(':\ ', ': ') |
|
|
messages = [{"role": "user", "content": combined_content}] |
|
|
prompt = self.decoder_tokenizer.apply_chat_template( |
|
|
messages, tokenize=False, add_generation_prompt=True, enable_thinking=False |
|
|
) |
|
|
if answer is None: |
|
|
return prompt |
|
|
prompt_len = len(self.decoder_tokenizer.encode(prompt, add_special_tokens=False)) |
|
|
messages_with_answer = messages + [{"role": "assistant", "content": answer}] |
|
|
response = self.decoder_tokenizer.apply_chat_template( |
|
|
messages_with_answer, tokenize=False, add_generation_prompt=False, enable_thinking=False |
|
|
) |
|
|
else: |
|
|
raise e |
|
|
|
|
|
return prompt_len, response |
|
|
|
|
|
def _blend_prompt_and_selected_memory_tokens(self, query: str, answer: str = None) -> Tuple[int, str]: |
|
|
"""Create prompt for stage 2 with selected memory tokens.""" |
|
|
mem_tokens_str = ''.join(self.decoder_tokenizer.mem_tokens) + self.decoder_tokenizer.sep_token |
|
|
docs = mem_tokens_str * self.generation_top_k |
|
|
|
|
|
prompt_system = 'You are a helpful assistant. Your task is to extract relevant information from provided documents and to answer to questions as briefly as possible.' |
|
|
prompt_user = f"Background:\n{docs}\n\nQuestion:{query}" |
|
|
|
|
|
sys_prompt = [{"role": "system", "content": prompt_system}] |
|
|
user_prompt = [{"role": "user", "content": prompt_user.replace(':\ ', ': ')}] |
|
|
|
|
|
try: |
|
|
prompt = self.decoder_tokenizer.apply_chat_template( |
|
|
sys_prompt + user_prompt, |
|
|
tokenize=False, |
|
|
add_generation_prompt=True, |
|
|
enable_thinking=False |
|
|
) |
|
|
prompt_len = len(self.decoder_tokenizer.encode(prompt, add_special_tokens=False)) |
|
|
|
|
|
if answer is not None: |
|
|
assistant_prompt = [{"role": "assistant", "content": answer}] |
|
|
response = self.decoder_tokenizer.apply_chat_template( |
|
|
sys_prompt + user_prompt + assistant_prompt, |
|
|
tokenize=False, |
|
|
add_generation_prompt=False, |
|
|
enable_thinking=False |
|
|
) |
|
|
else: |
|
|
response = prompt |
|
|
|
|
|
except TemplateError as e: |
|
|
if "System role not supported" in str(e): |
|
|
combined_content = prompt_system + '\n' + prompt_user.replace(':\ ', ': ') |
|
|
messages = [{"role": "user", "content": combined_content}] |
|
|
|
|
|
prompt = self.decoder_tokenizer.apply_chat_template( |
|
|
messages, |
|
|
tokenize=False, |
|
|
add_generation_prompt=True, |
|
|
enable_thinking=False |
|
|
) |
|
|
prompt_len = len(self.decoder_tokenizer.encode(prompt, add_special_tokens=False)) |
|
|
|
|
|
if answer is not None: |
|
|
messages_with_answer = messages + [{"role": "assistant", "content": answer}] |
|
|
response = self.decoder_tokenizer.apply_chat_template( |
|
|
messages_with_answer, |
|
|
tokenize=False, |
|
|
add_generation_prompt=False, |
|
|
enable_thinking=False |
|
|
) |
|
|
else: |
|
|
response = prompt |
|
|
else: |
|
|
raise e |
|
|
|
|
|
return prompt_len, response |
|
|
|
|
|
|
|
|
def save_pretrained(self, save_directory: str, **kwargs): |
|
|
"""Save only the LoRA adapters and their configurations.""" |
|
|
if self.lora: |
|
|
if not os.path.exists(save_directory): |
|
|
os.makedirs(save_directory) |
|
|
|
|
|
|
|
|
torch.save( |
|
|
self._get_all_adapters_state_dict(), |
|
|
os.path.join(save_directory, "adapters.pth") |
|
|
) |
|
|
|
|
|
|
|
|
torch.save( |
|
|
self._get_decoder_first_and_last_layer_state_dict(), |
|
|
os.path.join(save_directory, "decoder_first_last_layers.pth") |
|
|
) |
|
|
|
|
|
|
|
|
self.config.save_pretrained(save_directory) |
|
|
else: |
|
|
super().save_pretrained(save_directory, **kwargs) |
|
|
|
|
|
def _get_all_adapters_state_dict(self) -> Dict[str, Dict[str, torch.Tensor]]: |
|
|
"""Return the state dicts of all adapters.""" |
|
|
return { |
|
|
key: {k: v.cpu() for k, v in self.decoder.get_adapter_state_dict(key).items()} |
|
|
for key in self.adapter_keys |
|
|
} |
|
|
|
|
|
def _get_decoder_first_and_last_layer_state_dict(self) -> Dict[str, torch.Tensor]: |
|
|
"""Get first and last layers that change when adding tokens.""" |
|
|
out = {} |
|
|
for k, v in self.decoder.named_parameters(): |
|
|
if 'lm_head.weight' in k or 'embed_tokens.weight' in k: |
|
|
out[k] = v.cpu() |
|
|
return out |
|
|
|
|
|
@classmethod |
|
|
def from_pretrained(cls, pretrained_model_name_or_path: str, *args, **kwargs): |
|
|
"""Load model from pretrained checkpoint.""" |
|
|
|
|
|
config = CLaRaConfig.from_pretrained(pretrained_model_name_or_path) |
|
|
|
|
|
|
|
|
for key, value in kwargs.items(): |
|
|
if hasattr(config, key): |
|
|
setattr(config, key, value) |
|
|
|
|
|
map_location = torch.device("cpu") if not torch.cuda.is_available() else None |
|
|
|
|
|
if config.lora: |
|
|
|
|
|
config.load_adapters = False |
|
|
if 'device_map' in kwargs: |
|
|
config.device_map = kwargs['device_map'] |
|
|
|
|
|
|
|
|
print(f"Initializing model from trained checkpoint: {config}") |
|
|
model = cls(config) |
|
|
|
|
|
|
|
|
try: |
|
|
first_and_last_layers_path = hf_hub_download( |
|
|
repo_id=pretrained_model_name_or_path, |
|
|
filename="decoder_first_last_layers.pth" |
|
|
) |
|
|
except Exception: |
|
|
first_and_last_layers_path = os.path.join( |
|
|
pretrained_model_name_or_path, "decoder_first_last_layers.pth" |
|
|
) |
|
|
|
|
|
if os.path.exists(first_and_last_layers_path): |
|
|
first_and_last_decoder_state_dict = torch.load( |
|
|
first_and_last_layers_path, map_location=map_location, weights_only=True |
|
|
) |
|
|
for key in first_and_last_decoder_state_dict: |
|
|
assert key in model.decoder.state_dict() |
|
|
model.decoder.load_state_dict(first_and_last_decoder_state_dict, strict=False) |
|
|
else: |
|
|
print(f'First and last layer not found: {first_and_last_layers_path}') |
|
|
|
|
|
peft_config = model._get_peft_config(lora_r=config.lora_r) |
|
|
|
|
|
|
|
|
try: |
|
|
adapters_path = hf_hub_download( |
|
|
repo_id=pretrained_model_name_or_path, |
|
|
filename="adapters.pth" |
|
|
) |
|
|
except Exception: |
|
|
adapters_path = os.path.join(pretrained_model_name_or_path, "adapters.pth") |
|
|
|
|
|
if os.path.exists(adapters_path): |
|
|
adapters_state_dict = torch.load(adapters_path, map_location=map_location, weights_only=True) |
|
|
model._load_adapters_from_state_dict(adapters_state_dict, peft_config, config) |
|
|
else: |
|
|
warnings.warn(f'Adapters not found at {adapters_path}') |
|
|
|
|
|
model._set_all_adapters() |
|
|
config.load_adapters = True |
|
|
return model |
|
|
else: |
|
|
return super().from_pretrained(pretrained_model_name_or_path, **kwargs) |
|
|
def _load_adapters_from_state_dict(self, adapters_state_dict: Dict, peft_config: LoraConfig, config: CLaRaConfig): |
|
|
"""Load adapters from state dict based on training stage.""" |
|
|
if not getattr(config, 'pure_inference', False): |
|
|
for key, val in adapters_state_dict.items(): |
|
|
|
|
|
if config.training_stage == 'stage1' and key == 'query_reasoner_adapter': |
|
|
continue |
|
|
elif config.training_stage == 'stage1_2' and key in ['query_reasoner_adapter', 'decoder_adapter']: |
|
|
continue |
|
|
elif config.training_stage == 'stage2_reasoning' and key == 'decoder_adapter': |
|
|
continue |
|
|
|
|
|
self._load_adapter_from_state_dict( |
|
|
peft_config=peft_config, |
|
|
adapter_name=key, |
|
|
adapter_state_dict=val |
|
|
) |
|
|
else: |
|
|
|
|
|
for key, val in adapters_state_dict.items(): |
|
|
self._load_adapter_from_state_dict( |
|
|
peft_config=peft_config, |
|
|
adapter_name=key, |
|
|
adapter_state_dict=val |
|
|
) |
|
|
|
|
|
|
|
|
if config.training_stage == 'stage2' and 'query_reasoner_adapter' not in adapters_state_dict: |
|
|
self._handle_query_reasoner_adapter_loading(adapters_state_dict, peft_config) |
|
|
|
|
|
def _load_adapter_from_state_dict(self, peft_config: LoraConfig, adapter_name: str, adapter_state_dict: Dict): |
|
|
"""Create adapter from state dict.""" |
|
|
print(f'Loading checkpoint adapter: {adapter_name}') |
|
|
self.decoder.load_adapter( |
|
|
peft_config=peft_config, |
|
|
adapter_name=adapter_name, |
|
|
adapter_state_dict=adapter_state_dict |
|
|
) |
|
|
self.adapter_keys.append(adapter_name) |
|
|
|
|
|
def _handle_query_reasoner_adapter_loading(self, adapters_state_dict: Dict, peft_config: LoraConfig): |
|
|
"""Handle special loading logic for query reasoner adapter.""" |
|
|
if 'encoder_adapter' in adapters_state_dict and 'query_reasoner_adapter' not in adapters_state_dict: |
|
|
|
|
|
renamed = {} |
|
|
for k, v in adapters_state_dict['encoder_adapter'].items(): |
|
|
new_k = k.replace('encoder_adapter', 'query_reasoner_adapter') |
|
|
renamed[new_k] = v.detach().clone() |
|
|
|
|
|
self._load_adapter_from_state_dict( |
|
|
peft_config=peft_config, |
|
|
adapter_name='query_reasoner_adapter', |
|
|
adapter_state_dict=renamed |
|
|
) |
|
|
print('Loaded query_reasoner_adapter from stage 1 compressor checkpoint') |
|
|
else: |
|
|
|
|
|
self.decoder.add_adapter(peft_config, 'query_reasoner_adapter') |
|
|
self.adapter_keys.append('query_reasoner_adapter') |
|
|
print('Loaded query_reasoner_adapter randomly for stage 2 training') |
|
|
|
|
|
|
|
|
def forward(self, |
|
|
batch: Dict = None, |
|
|
questions: List[str] = None, |
|
|
documents: List[List[str]] = None, |
|
|
answers: List[str] = None, |
|
|
original_answer_gen_api: str = None, |
|
|
stage2_mips: bool = False, |
|
|
stage2_retrieval_top_n: int = None) -> Tuple[torch.Tensor, Dict]: |
|
|
""" |
|
|
Forward pass with support for both batch and legacy interfaces. |
|
|
|
|
|
Args: |
|
|
batch: Preprocessed batch dict (new interface) |
|
|
questions: List of questions (legacy interface) |
|
|
documents: List of document lists (legacy interface) |
|
|
answers: List of answers (legacy interface) |
|
|
original_answer_gen_api: API URL for generation (legacy interface) |
|
|
stage2_mips: Whether to use MIPS for stage2 |
|
|
stage2_retrieval_top_n: Top-n for stage2 retrieval |
|
|
|
|
|
Returns: |
|
|
Tuple of (loss, additional_outputs_dict) |
|
|
""" |
|
|
if batch is not None: |
|
|
return self._forward_batch(batch, stage2_mips, stage2_retrieval_top_n) |
|
|
else: |
|
|
return self._forward_legacy(questions, documents, answers, original_answer_gen_api) |
|
|
|
|
|
def _forward_batch(self, batch: Dict, stage2_mips: bool, stage2_retrieval_top_n: int) -> Tuple[torch.Tensor, Dict]: |
|
|
"""Handle batch-based forward pass.""" |
|
|
stage = batch.get("stage", None) |
|
|
|
|
|
if stage in ["stage1", "stage1_2"]: |
|
|
return self._forward_stage1_batch(batch) |
|
|
elif stage == "stage2": |
|
|
return self._forward_stage2_batch(batch, stage2_mips, stage2_retrieval_top_n) |
|
|
elif stage == "stage2_pretrain_retrieval": |
|
|
return self._forward_stage2_pretrain_batch(batch, stage2_mips, stage2_retrieval_top_n) |
|
|
elif stage == "stage2_reasoning": |
|
|
return self._forward_stage2_reasoning_batch(batch) |
|
|
else: |
|
|
raise ValueError(f"Unknown stage: {stage}") |
|
|
|
|
|
def _forward_stage1_batch(self, batch: Dict) -> Tuple[torch.Tensor, Dict]: |
|
|
"""Forward pass for stage 1 training.""" |
|
|
|
|
|
enc_input_ids = batch["enc_input_ids"].to(self.decoder.device) |
|
|
enc_attention_mask = batch["enc_attention_mask"].to(self.decoder.device) |
|
|
dec_input_ids = batch["dec_input_ids"].to(self.decoder.device) |
|
|
dec_attention_mask = batch["dec_attention_mask"].to(self.decoder.device) |
|
|
labels = batch["labels"].to(self.decoder.device) |
|
|
|
|
|
out = self._forward_stage_1( |
|
|
enc_input_ids=enc_input_ids, |
|
|
enc_attention_mask=enc_attention_mask, |
|
|
dec_input_ids=dec_input_ids, |
|
|
dec_attention_mask=dec_attention_mask, |
|
|
labels=labels, |
|
|
) |
|
|
return out["loss"], {"logits": out["logits"], "mse_loss": out["mse_loss"]} |
|
|
|
|
|
def _forward_stage2_batch(self, batch: Dict, stage2_mips: bool, stage2_retrieval_top_n: int) -> Tuple[torch.Tensor, Dict]: |
|
|
"""Forward pass for stage 2 training.""" |
|
|
self.decoder.set_adapter('query_reasoner_adapter') |
|
|
|
|
|
B = batch["labels"].shape[0] |
|
|
query_reps = self._compr_query_reasoner_stage2( |
|
|
batch["query_input_ids"].to(self.decoder.device), |
|
|
batch["query_attention_mask"].to(self.decoder.device) |
|
|
) |
|
|
|
|
|
enc_input_ids = batch["enc_input_ids"].to(self.decoder.device) |
|
|
enc_attention_mask = batch["enc_attention_mask"].to(self.decoder.device) |
|
|
dec_input_ids = batch["dec_input_ids"].to(self.decoder.device) |
|
|
dec_attention_mask = batch["dec_attention_mask"].to(self.decoder.device) |
|
|
labels = batch["labels"].to(self.decoder.device) |
|
|
|
|
|
|
|
|
if stage2_mips: |
|
|
retrieved_doc_embeddings = self._retrieve_embeddings( |
|
|
query_reps, stage2_retrieval_top_n=stage2_retrieval_top_n |
|
|
) |
|
|
scores = torch.bmm( |
|
|
query_reps.unsqueeze(1), |
|
|
retrieved_doc_embeddings.transpose(1, 2) |
|
|
).squeeze(1) |
|
|
z, topk_idx = differentiable_topk(scores, self.generation_top_k, temperature=1) |
|
|
selected = torch.einsum('bkn,bnd->bkd', z, retrieved_doc_embeddings) |
|
|
selected = selected.view(selected.size(0) * selected.size(1), -1, self.hidden_size) |
|
|
else: |
|
|
with torch.no_grad(): |
|
|
retrieved_doc_embeddings, mse_loss = self.compress(enc_input_ids, enc_attention_mask) |
|
|
|
|
|
stage2_retrieval_top_n = retrieved_doc_embeddings.shape[0] // B |
|
|
retrieved_doc_embeddings = retrieved_doc_embeddings.reshape(B, stage2_retrieval_top_n, -1) |
|
|
query_reps = query_reps.to(retrieved_doc_embeddings.dtype) |
|
|
|
|
|
scores = torch.bmm( |
|
|
F.normalize(query_reps, dim=-1, p=2).unsqueeze(1).float(), |
|
|
F.normalize(retrieved_doc_embeddings, dim=-1, p=2).float().transpose(1, 2) |
|
|
).squeeze(1) |
|
|
|
|
|
z, topk_idx = differentiable_topk(scores, self.generation_top_k, temperature=0.02) |
|
|
selected = torch.einsum('bkn,bnd->bkd', z.to(retrieved_doc_embeddings.dtype), retrieved_doc_embeddings) |
|
|
selected = selected.view(selected.size(0) * selected.size(1), -1, self.hidden_size) |
|
|
|
|
|
inputs_embeds = self._replace_emb_stage2(selected, dec_input_ids) |
|
|
|
|
|
if 'decoder_adapter' in self.adapter_keys: |
|
|
self.decoder.set_adapter('decoder_adapter') |
|
|
|
|
|
dec_out = self.decoder( |
|
|
inputs_embeds=inputs_embeds, |
|
|
attention_mask=dec_attention_mask, |
|
|
labels=labels, |
|
|
) |
|
|
|
|
|
self.decoder.set_adapter(['decoder_adapter', 'query_reasoner_adapter']) |
|
|
return dec_out.loss, {"logits": dec_out.logits, "topk_idx": topk_idx, "mse_loss": mse_loss} |
|
|
|
|
|
def _forward_stage2_pretrain_batch(self, batch: Dict, stage2_mips: bool, stage2_retrieval_top_n: int) -> Tuple[torch.Tensor, Dict]: |
|
|
"""Forward pass for stage 2 pretraining with retrieval.""" |
|
|
self.decoder.set_adapter('query_reasoner_adapter') |
|
|
|
|
|
B = batch["labels"].shape[0] |
|
|
N = batch["enc_input_ids"].shape[0] // B |
|
|
device = self.decoder.device |
|
|
|
|
|
query_reps = self._compr_query_reasoner_stage2( |
|
|
batch["query_input_ids"].to(device), |
|
|
batch["query_attention_mask"].to(device) |
|
|
) |
|
|
|
|
|
enc_input_ids = batch["enc_input_ids"].to(device) |
|
|
enc_attention_mask = batch["enc_attention_mask"].to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
|
retrieved_doc_embeddings, mse_loss = self.compress(enc_input_ids, enc_attention_mask) |
|
|
|
|
|
stage2_retrieval_top_n = retrieved_doc_embeddings.shape[0] // B |
|
|
retrieved_doc_embeddings = retrieved_doc_embeddings.reshape(B, stage2_retrieval_top_n, -1) |
|
|
query_reps = query_reps.to(retrieved_doc_embeddings.dtype) |
|
|
|
|
|
scores = torch.bmm( |
|
|
F.normalize(query_reps, dim=-1, p=2).unsqueeze(1).float(), |
|
|
F.normalize(retrieved_doc_embeddings, dim=-1, p=2).float().transpose(1, 2) |
|
|
).squeeze(1) |
|
|
|
|
|
pos_index = batch["pos_index"] |
|
|
pos_mask = build_pos_mask(pos_index, N, device) |
|
|
tau = 0.02 |
|
|
logits = scores / tau |
|
|
|
|
|
pos_logits = logits.masked_fill(~pos_mask, float('-inf')) |
|
|
num = torch.logsumexp(pos_logits, dim=-1) |
|
|
den = torch.logsumexp(logits, dim=-1) |
|
|
loss_vec = -(num - den) |
|
|
valid = pos_mask.any(dim=-1) |
|
|
loss = loss_vec[valid].mean() |
|
|
|
|
|
topk = self.generation_top_k |
|
|
topk_idx = logits.topk(k=min(topk, N), dim=-1).indices |
|
|
|
|
|
return loss, {"logits": [[]], "topk_idx": topk_idx, "mse_loss": mse_loss} |
|
|
|
|
|
def _forward_stage2_reasoning_batch(self, batch: Dict) -> Tuple[torch.Tensor, Dict]: |
|
|
"""Forward pass for stage 2 reasoning training.""" |
|
|
B = batch["labels"].shape[0] |
|
|
enc_input_ids = batch["enc_input_ids"].to(self.decoder.device) |
|
|
enc_attention_mask = batch["enc_attention_mask"].to(self.decoder.device) |
|
|
dec_input_ids = batch["dec_input_ids"].to(self.decoder.device) |
|
|
dec_attention_mask = batch["dec_attention_mask"].to(self.decoder.device) |
|
|
labels = batch["labels"].to(self.decoder.device) |
|
|
|
|
|
if sum(batch["docs_num"]) != 0: |
|
|
with torch.no_grad(): |
|
|
selected, mse_loss = self.compress(enc_input_ids, enc_attention_mask) |
|
|
indices = batch["docs_num"] |
|
|
inputs_embeds = self._replace_reasoning_embeddings(selected, dec_input_ids, indices) |
|
|
else: |
|
|
inputs_embeds = self.decoder.get_input_embeddings()(dec_input_ids) |
|
|
mse_loss = 0 |
|
|
|
|
|
if 'decoder_adapter' in self.adapter_keys: |
|
|
self.decoder.set_adapter('decoder_adapter') |
|
|
|
|
|
dec_out = self.decoder( |
|
|
inputs_embeds=inputs_embeds, |
|
|
attention_mask=dec_attention_mask, |
|
|
labels=labels, |
|
|
) |
|
|
|
|
|
self.decoder.set_adapter(['decoder_adapter']) |
|
|
return dec_out.loss, {"logits": dec_out.logits, "mse_loss": mse_loss} |
|
|
|
|
|
def _forward_stage_1(self, |
|
|
enc_input_ids: torch.LongTensor = None, |
|
|
enc_attention_mask: torch.LongTensor = None, |
|
|
dec_input_ids: torch.LongTensor = None, |
|
|
dec_attention_mask: torch.LongTensor = None, |
|
|
labels: torch.LongTensor = None) -> Dict[str, torch.Tensor]: |
|
|
"""Stage 1 forward pass for document compression and QA.""" |
|
|
assert enc_input_ids.size() == enc_attention_mask.size() |
|
|
|
|
|
|
|
|
if len(enc_input_ids.size()) == 3: |
|
|
batch_size, top_k, seq_length = enc_input_ids.size() |
|
|
enc_input_ids = enc_input_ids.view(batch_size * top_k, seq_length) |
|
|
enc_attention_mask = enc_attention_mask.view(batch_size * top_k, seq_length) |
|
|
|
|
|
assert enc_input_ids.size(0) == dec_input_ids.size(0) * self.generation_top_k |
|
|
|
|
|
|
|
|
compressed_embs, mse_loss = self.compress(enc_input_ids, enc_attention_mask) |
|
|
|
|
|
|
|
|
inputs_embeds = self._replace_emb(compressed_embs, dec_input_ids) |
|
|
|
|
|
|
|
|
if (self.training_form == "compressor") and (self.compr is None): |
|
|
inputs_embeds = inputs_embeds.detach() |
|
|
|
|
|
|
|
|
if 'decoder_adapter' in self.adapter_keys: |
|
|
self.decoder.set_adapter('decoder_adapter') |
|
|
|
|
|
|
|
|
decoder_outputs = self.decoder( |
|
|
inputs_embeds=inputs_embeds, |
|
|
attention_mask=dec_attention_mask, |
|
|
labels=labels |
|
|
) |
|
|
|
|
|
|
|
|
self.decoder.set_adapter(['decoder_adapter', 'encoder_adapter']) |
|
|
|
|
|
return { |
|
|
"loss": decoder_outputs.loss, |
|
|
"logits": decoder_outputs.logits, |
|
|
"mse_loss": mse_loss |
|
|
} |
|
|
|
|
|
def _replace_reasoning_embeddings(self, |
|
|
compressed_embs: torch.Tensor, |
|
|
dec_input_ids: torch.LongTensor, |
|
|
docs_per_example: List[int]) -> torch.Tensor: |
|
|
"""Replace memory slots with compressed embeddings for reasoning.""" |
|
|
device = dec_input_ids.device |
|
|
inputs_embeds = self.decoder.get_input_embeddings()(dec_input_ids) |
|
|
|
|
|
num_embs = compressed_embs.size(1) |
|
|
slot_len = num_embs + (1 if getattr(self, "sep", False) else 0) |
|
|
|
|
|
if not isinstance(docs_per_example, torch.Tensor): |
|
|
docs_per_example = torch.tensor(docs_per_example, device=device, dtype=torch.long) |
|
|
else: |
|
|
docs_per_example = docs_per_example.to(device=device, dtype=torch.long) |
|
|
|
|
|
offsets = torch.zeros(docs_per_example.size(0) + 1, device=device, dtype=torch.long) |
|
|
offsets[1:] = torch.cumsum(docs_per_example, dim=0) |
|
|
total_docs = int(offsets[-1].item()) |
|
|
assert total_docs == compressed_embs.size(0) |
|
|
|
|
|
mem_id = self.decoder_tokenizer.mem_token_ids[0] |
|
|
B, L, H = inputs_embeds.size() |
|
|
|
|
|
for i in range(B): |
|
|
|
|
|
mem_pos = (dec_input_ids[i] == mem_id).nonzero(as_tuple=True)[0] |
|
|
if mem_pos.numel() == 0: |
|
|
continue |
|
|
first_mem_idx = int(mem_pos[0].item()) |
|
|
|
|
|
n_docs_i = int(docs_per_example[i].item()) |
|
|
base = int(offsets[i].item()) |
|
|
|
|
|
needed_len = first_mem_idx + n_docs_i * slot_len |
|
|
assert needed_len <= L |
|
|
|
|
|
for local_j in range(n_docs_i): |
|
|
global_j = base + local_j |
|
|
start_idx = first_mem_idx + local_j * slot_len |
|
|
target_slice = inputs_embeds[i, start_idx:start_idx + num_embs, :] |
|
|
src = compressed_embs[global_j] |
|
|
assert target_slice.size() == src.size() |
|
|
inputs_embeds[i, start_idx:start_idx + num_embs, :] = src |
|
|
|
|
|
return inputs_embeds |
|
|
|
|
|
def _generate(self, model_input: Dict[str, torch.Tensor], max_new_tokens: int = 128, |
|
|
return_doc_embeddings: bool = False) -> List[str]: |
|
|
"""Generate text from model inputs.""" |
|
|
enc_input_ids = model_input['enc_input_ids'] |
|
|
enc_attention_mask = model_input['enc_attention_mask'] |
|
|
dec_input_ids = model_input['dec_input_ids'] |
|
|
dec_attention_mask = model_input['dec_attention_mask'] |
|
|
|
|
|
assert enc_input_ids.size() == enc_attention_mask.size() |
|
|
|
|
|
if len(enc_input_ids.size()) == 3: |
|
|
batch_size, top_k, seq_length = enc_input_ids.size() |
|
|
enc_input_ids = enc_input_ids.view(batch_size * top_k, seq_length) |
|
|
enc_attention_mask = enc_attention_mask.view(batch_size * top_k, seq_length) |
|
|
|
|
|
assert enc_input_ids.size(0) == dec_input_ids.size(0) * self.generation_top_k |
|
|
|
|
|
compressed_embs, _ = self.compress(enc_input_ids.to('cuda'), enc_attention_mask.to('cuda')) |
|
|
inputs_embeds = self._replace_emb(compressed_embs, dec_input_ids.to('cuda')) |
|
|
|
|
|
if 'decoder_adapter' in self.adapter_keys: |
|
|
self.decoder.set_adapter('decoder_adapter') |
|
|
|
|
|
output_ids = self.decoder.generate( |
|
|
inputs_embeds=inputs_embeds.to("cuda"), |
|
|
attention_mask=dec_attention_mask.to("cuda"), |
|
|
do_sample=False, |
|
|
top_p=None, |
|
|
max_new_tokens=max_new_tokens |
|
|
) |
|
|
|
|
|
decoded = self.decoder_tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
|
|
|
|
if return_doc_embeddings: |
|
|
assert 'batch_size' in locals() and 'top_k' in locals() |
|
|
compressed_embs = compressed_embs.view(batch_size, top_k, compressed_embs.size(1), compressed_embs.size(2)) |
|
|
return decoded, compressed_embs |
|
|
else: |
|
|
return decoded |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
cfg = CLaRaConfig( |
|
|
decoder_model_name='/mnt/ceph_rbd/model/Mistral-7B-Instruct-v0.2', |
|
|
compr_model_name="mistral_trimmed", |
|
|
compr_rate=64, |
|
|
compr_n_layers=5, |
|
|
compr_mlp_hidden_dim=8096, |
|
|
compr_use_mlp=False, |
|
|
lora=True, |
|
|
lora_compressor=True, |
|
|
training_form="both", |
|
|
load_adapters=True, |
|
|
kbtc_training=False, |
|
|
optimize_mem_tokens=True, |
|
|
different_mem_tokens=True, |
|
|
attn_implementation='flash_attention_2' |
|
|
) |
|
|
|
|
|
|
|
|
clara = CLaRa(cfg) |
|
|
|
|
|
|
|
|
clara.save_pretrained('test_ckpt') |
|
|
|
|
|
del clara |
|
|
torch.cuda.empty_cache() |
|
|
gc.collect() |
|
|
|
|
|
|
|
|
clara = CLaRa.from_pretrained('test_ckpt') |
|
|
print("Model successfully loaded!") |