Add/Update generated README.md
Browse files
README.md
CHANGED
|
@@ -6,8 +6,9 @@ tags:
|
|
| 6 |
- generated-by-script
|
| 7 |
- peft # Assume PEFT adapter unless explicitly a full model repo
|
| 8 |
- image-captioning # Add more specific task tags if applicable
|
| 9 |
-
base_model:
|
| 10 |
-
- nlpconnect/vit-gpt2-image-captioning # Heuristic guess for
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
# Model: ashimdahal/nlpconnect-vit-gpt2-image-captioning_nlpconnect-vit-gpt2-image-captioning
|
|
@@ -24,7 +25,7 @@ https://github.com/ashimdahal/captioning_image/blob/main
|
|
| 24 |
|
| 25 |
**⚠️ Important:** The `base_model` tag in the metadata above is initially empty. The models listed here are *heuristic guesses* based on the training directory name (`nlpconnect-vit-gpt2-image-captioning_nlpconnect-vit-gpt2-image-captioning`). Please verify these against your training configuration and update the `base_model:` list in the YAML metadata block at the top of this README with the correct Hugging Face model identifiers.
|
| 26 |
|
| 27 |
-
## How to Use (Example with PEFT)
|
| 28 |
|
| 29 |
```python
|
| 30 |
from transformers import AutoProcessor, AutoModelForVision2Seq, Blip2ForConditionalGeneration # Or other relevant classes
|
|
@@ -33,7 +34,7 @@ import torch
|
|
| 33 |
|
| 34 |
# --- Configuration ---
|
| 35 |
# 1. Specify the EXACT base model identifiers used during training
|
| 36 |
-
|
| 37 |
base_model_id = "nlpconnect/vit-gpt2-image-captioning" # <-- Replace with correct HF ID (e.g., Salesforce/blip2-opt-2.7b)
|
| 38 |
|
| 39 |
# 2. Specify the PEFT adapter repository ID (this repo)
|
|
@@ -47,9 +48,11 @@ processor = AutoProcessor.from_pretrained(base_processor_id)
|
|
| 47 |
base_model = Blip2ForConditionalGeneration.from_pretrained(
|
| 48 |
base_model_id,
|
| 49 |
torch_dtype=torch.float16 # Or torch.bfloat16 or float32, match training/inference needs
|
| 50 |
-
|
| 51 |
# Or for other model types:
|
| 52 |
base_model = AutoModelForVision2Seq.from_pretrained(base_model_id, torch_dtype=torch.float16)
|
|
|
|
|
|
|
| 53 |
|
| 54 |
# --- Load PEFT Adapter ---
|
| 55 |
# Load the adapter config and merge the adapter weights into the base model
|
|
@@ -60,16 +63,15 @@ model.eval() # Set model to evaluation mode
|
|
| 60 |
# --- Inference Example ---
|
| 61 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 62 |
model.to(device)
|
| 63 |
-
|
| 64 |
image = ... # Load your image (e.g., using PIL)
|
| 65 |
text = "a photo of" # Optional prompt start
|
| 66 |
-
|
| 67 |
inputs = processor(images=image, text=text, return_tensors="pt").to(device, torch.float16) # Match model dtype
|
| 68 |
|
| 69 |
generated_ids = model.generate(**inputs, max_new_tokens=50)
|
| 70 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 71 |
print(f"Generated Caption: {{generated_text}}")
|
| 72 |
-
|
| 73 |
```
|
| 74 |
|
| 75 |
*More model-specific documentation, evaluation results, and usage examples should be added here.*
|
|
|
|
| 6 |
- generated-by-script
|
| 7 |
- peft # Assume PEFT adapter unless explicitly a full model repo
|
| 8 |
- image-captioning # Add more specific task tags if applicable
|
| 9 |
+
base_model: [] # <-- FIXED: Provide empty list as default to satisfy validator
|
| 10 |
+
# - nlpconnect/vit-gpt2-image-captioning # Heuristic guess for processor, VERIFY MANUALLY
|
| 11 |
+
# - nlpconnect/vit-gpt2-image-captioning # Heuristic guess for decoder, VERIFY MANUALLY
|
| 12 |
---
|
| 13 |
|
| 14 |
# Model: ashimdahal/nlpconnect-vit-gpt2-image-captioning_nlpconnect-vit-gpt2-image-captioning
|
|
|
|
| 25 |
|
| 26 |
**⚠️ Important:** The `base_model` tag in the metadata above is initially empty. The models listed here are *heuristic guesses* based on the training directory name (`nlpconnect-vit-gpt2-image-captioning_nlpconnect-vit-gpt2-image-captioning`). Please verify these against your training configuration and update the `base_model:` list in the YAML metadata block at the top of this README with the correct Hugging Face model identifiers.
|
| 27 |
|
| 28 |
+
## How to Use (Example with PEFT)
|
| 29 |
|
| 30 |
```python
|
| 31 |
from transformers import AutoProcessor, AutoModelForVision2Seq, Blip2ForConditionalGeneration # Or other relevant classes
|
|
|
|
| 34 |
|
| 35 |
# --- Configuration ---
|
| 36 |
# 1. Specify the EXACT base model identifiers used during training
|
| 37 |
+
base_processor_id = "nlpconnect/vit-gpt2-image-captioning" # <-- Replace with correct HF ID
|
| 38 |
base_model_id = "nlpconnect/vit-gpt2-image-captioning" # <-- Replace with correct HF ID (e.g., Salesforce/blip2-opt-2.7b)
|
| 39 |
|
| 40 |
# 2. Specify the PEFT adapter repository ID (this repo)
|
|
|
|
| 48 |
base_model = Blip2ForConditionalGeneration.from_pretrained(
|
| 49 |
base_model_id,
|
| 50 |
torch_dtype=torch.float16 # Or torch.bfloat16 or float32, match training/inference needs
|
| 51 |
+
)
|
| 52 |
# Or for other model types:
|
| 53 |
base_model = AutoModelForVision2Seq.from_pretrained(base_model_id, torch_dtype=torch.float16)
|
| 54 |
+
base_model = AutoModelForCausalLM
|
| 55 |
+
......
|
| 56 |
|
| 57 |
# --- Load PEFT Adapter ---
|
| 58 |
# Load the adapter config and merge the adapter weights into the base model
|
|
|
|
| 63 |
# --- Inference Example ---
|
| 64 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 65 |
model.to(device)
|
| 66 |
+
|
| 67 |
image = ... # Load your image (e.g., using PIL)
|
| 68 |
text = "a photo of" # Optional prompt start
|
| 69 |
+
|
| 70 |
inputs = processor(images=image, text=text, return_tensors="pt").to(device, torch.float16) # Match model dtype
|
| 71 |
|
| 72 |
generated_ids = model.generate(**inputs, max_new_tokens=50)
|
| 73 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 74 |
print(f"Generated Caption: {{generated_text}}")
|
|
|
|
| 75 |
```
|
| 76 |
|
| 77 |
*More model-specific documentation, evaluation results, and usage examples should be added here.*
|