Commit
·
35f28e0
1
Parent(s):
45912c7
model & handler update
Browse files- README.md +4 -85
- config.json +1 -1
- handler.py +15 -13
README.md
CHANGED
|
@@ -1,91 +1,10 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
pipeline_tag: image-classification
|
| 4 |
library_name: torchvision
|
| 5 |
-
tags:
|
| 6 |
-
|
| 7 |
-
- efficientnet
|
| 8 |
-
- efficientnet-v2
|
| 9 |
-
- garbage
|
| 10 |
-
- waste-sorting
|
| 11 |
-
metrics:
|
| 12 |
-
- accuracy
|
| 13 |
-
|
| 14 |
-
---
|
| 15 |
-
|
| 16 |
-
# Garbage Classifier – EfficientNet‑V2‑S
|
| 17 |
-
|
| 18 |
-
A finetuned EfficientNet‑V2‑S model that recognises **10 waste categories**
|
| 19 |
-
(battery, glass, plastic, etc.) for smart recycling and sorting applications.
|
| 20 |
-
|
| 21 |
-
| id | class |
|
| 22 |
-
| -: | ---------- |
|
| 23 |
-
| 0 | battery |
|
| 24 |
-
| 1 | biological |
|
| 25 |
-
| 2 | cardboard |
|
| 26 |
-
| 3 | clothes |
|
| 27 |
-
| 4 | glass |
|
| 28 |
-
| 5 | metal |
|
| 29 |
-
| 6 | paper |
|
| 30 |
-
| 7 | plastic |
|
| 31 |
-
| 8 | shoes |
|
| 32 |
-
| 9 | trash |
|
| 33 |
-
|
| 34 |
-
---
|
| 35 |
-
|
| 36 |
-
## Quick Start
|
| 37 |
-
|
| 38 |
-
```python
|
| 39 |
-
from huggingface_hub import InferenceClient
|
| 40 |
-
|
| 41 |
-
client = InferenceClient("attilaultzindur/garbage_classifier_effnetv2s_ft")
|
| 42 |
-
|
| 43 |
-
with open("your_image.jpg", "rb") as f:
|
| 44 |
-
predictions = client.post(data={"inputs": f.read()})
|
| 45 |
-
print(predictions)
|
| 46 |
-
```
|
| 47 |
-
|
| 48 |
-
Example output:
|
| 49 |
-
|
| 50 |
-
```json
|
| 51 |
-
[
|
| 52 |
-
{"label": "plastic", "score": 0.997},
|
| 53 |
-
{"label": "metal", "score": 0.002},
|
| 54 |
-
…
|
| 55 |
-
]
|
| 56 |
-
```
|
| 57 |
-
|
| 58 |
-
---
|
| 59 |
-
|
| 60 |
-
## Model Details
|
| 61 |
-
|
| 62 |
-
| Field | Value |
|
| 63 |
-
| ------------------------ | --------------------------------------------------------- |
|
| 64 |
-
| Architecture | EfficientNet‑V2‑S (torchvision) |
|
| 65 |
-
| Input size | `3 × 224 × 224` |
|
| 66 |
-
| Normalisation | mean = \[0.485 0.456 0.406], std = \[0.229 0.224 0.225] |
|
| 67 |
-
| Classification head | `Linear(1280→256) → ReLU → Dropout(0.5) → Linear(256→10)` |
|
| 68 |
-
| Best validation accuracy | **97.6 %** after 20 epochs |
|
| 69 |
-
|
| 70 |
-
### Training summary
|
| 71 |
-
|
| 72 |
-
* **Dataset:** [Garbage Classification v2 (Kaggle)](https://www.kaggle.com/datasets/sumn2u/garbage-classification-v2)
|
| 73 |
-
split 80 % train / 20 % val
|
| 74 |
-
* **Augmentations:** RandomResizedCrop, ColorJitter, RandomAffine, HorizontalFlip
|
| 75 |
-
* **Optimiser:** Adam, LR = 1 e‑4
|
| 76 |
-
* **Frozen layers:** first 70 % of feature blocks
|
| 77 |
-
* **Hardware:** single NVIDIA GPU
|
| 78 |
-
|
| 79 |
-
---
|
| 80 |
-
|
| 81 |
-
## Reproduce
|
| 82 |
-
|
| 83 |
-
The full training script is provided in `train_script.py`.
|
| 84 |
-
Run it with the same hyper‑parameters to reproduce the checkpoint.
|
| 85 |
-
|
| 86 |
---
|
| 87 |
|
| 88 |
-
|
| 89 |
|
| 90 |
-
|
| 91 |
-
Add an appropriate open‑source licence before using the model in production.
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
pipeline_tag: image-classification
|
| 3 |
library_name: torchvision
|
| 4 |
+
tags: [image-classification, efficientnet, garbage]
|
| 5 |
+
metrics: [accuracy]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
---
|
| 7 |
|
| 8 |
+
# Garbage Classifier – EfficientNet‑V2‑S
|
| 9 |
|
| 10 |
+
Finetuned model that recognises 10 waste categories.
|
|
|
config.json
CHANGED
|
@@ -14,5 +14,5 @@
|
|
| 14 |
"shoes",
|
| 15 |
"trash"
|
| 16 |
],
|
| 17 |
-
"
|
| 18 |
}
|
|
|
|
| 14 |
"shoes",
|
| 15 |
"trash"
|
| 16 |
],
|
| 17 |
+
"library_name": "torchvision"
|
| 18 |
}
|
handler.py
CHANGED
|
@@ -1,37 +1,39 @@
|
|
| 1 |
from typing import Dict, Any
|
| 2 |
import io, base64, torch, torchvision
|
| 3 |
-
from safetensors.torch import load_file
|
| 4 |
from PIL import Image
|
| 5 |
from torchvision import transforms as T
|
|
|
|
| 6 |
|
| 7 |
class EndpointHandler:
|
| 8 |
-
def __init__(self, path
|
| 9 |
self.labels = ['battery', 'biological', 'cardboard', 'clothes', 'glass', 'metal', 'paper', 'plastic', 'shoes', 'trash']
|
| 10 |
-
self.model
|
| 11 |
nf = self.model.classifier[1].in_features
|
| 12 |
self.model.classifier = torch.nn.Sequential(
|
| 13 |
torch.nn.Linear(nf, 256),
|
| 14 |
torch.nn.ReLU(inplace=True),
|
| 15 |
torch.nn.Dropout(0.5),
|
| 16 |
-
torch.nn.Linear(256, len(self.labels))
|
| 17 |
)
|
| 18 |
-
state = load_file(
|
| 19 |
self.model.load_state_dict(state)
|
| 20 |
self.model.eval()
|
| 21 |
-
|
|
|
|
| 22 |
T.Resize((224, 224)),
|
| 23 |
T.ToTensor(),
|
| 24 |
-
T.Normalize(mean=[0.485,0.456,0.406],
|
|
|
|
| 25 |
])
|
| 26 |
|
| 27 |
def __call__(self, data: Dict[str, Any]):
|
| 28 |
-
img_bytes = data[
|
| 29 |
-
if isinstance(img_bytes, str):
|
| 30 |
img_bytes = base64.b64decode(img_bytes)
|
| 31 |
-
img = Image.open(io.BytesIO(img_bytes)).convert(
|
| 32 |
-
x
|
| 33 |
with torch.no_grad():
|
| 34 |
probs = self.model(x).softmax(1)[0]
|
| 35 |
topk = probs.topk(5)
|
| 36 |
-
return [{
|
| 37 |
-
for j,
|
|
|
|
| 1 |
from typing import Dict, Any
|
| 2 |
import io, base64, torch, torchvision
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
from torchvision import transforms as T
|
| 5 |
+
from safetensors.torch import load_file
|
| 6 |
|
| 7 |
class EndpointHandler:
|
| 8 |
+
def __init__(self, path: str = "."):
|
| 9 |
self.labels = ['battery', 'biological', 'cardboard', 'clothes', 'glass', 'metal', 'paper', 'plastic', 'shoes', 'trash']
|
| 10 |
+
self.model = torchvision.models.efficientnet_v2_s(weights=None)
|
| 11 |
nf = self.model.classifier[1].in_features
|
| 12 |
self.model.classifier = torch.nn.Sequential(
|
| 13 |
torch.nn.Linear(nf, 256),
|
| 14 |
torch.nn.ReLU(inplace=True),
|
| 15 |
torch.nn.Dropout(0.5),
|
| 16 |
+
torch.nn.Linear(256, len(self.labels)),
|
| 17 |
)
|
| 18 |
+
state = load_file(f"{path}/model.safetensors", device="cpu")
|
| 19 |
self.model.load_state_dict(state)
|
| 20 |
self.model.eval()
|
| 21 |
+
|
| 22 |
+
self.preprocess = T.Compose([
|
| 23 |
T.Resize((224, 224)),
|
| 24 |
T.ToTensor(),
|
| 25 |
+
T.Normalize(mean=[0.485,0.456,0.406],
|
| 26 |
+
std =[0.229,0.224,0.225])
|
| 27 |
])
|
| 28 |
|
| 29 |
def __call__(self, data: Dict[str, Any]):
|
| 30 |
+
img_bytes = data["inputs"]
|
| 31 |
+
if isinstance(img_bytes, str): # base64
|
| 32 |
img_bytes = base64.b64decode(img_bytes)
|
| 33 |
+
img = Image.open(io.BytesIO(img_bytes)).convert("RGB")
|
| 34 |
+
x = self.preprocess(img).unsqueeze(0)
|
| 35 |
with torch.no_grad():
|
| 36 |
probs = self.model(x).softmax(1)[0]
|
| 37 |
topk = probs.topk(5)
|
| 38 |
+
return [{"label": self.labels[i], "score": float(topk.values[j])}
|
| 39 |
+
for j,i in enumerate(topk.indices)]
|