English
File size: 8,840 Bytes
5019d3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
import json
import zipfile
import numpy as np
import pickle
import yaml

def uniform_feature_sampling(features, max_len):
    num_clips = features.shape[0]
    if max_len is None or num_clips <= max_len:
        return features
    idxs = np.arange(0, max_len + 1, 1.0) / max_len * num_clips
    idxs = np.round(idxs).astype(np.int32)
    idxs[idxs > num_clips - 1] = num_clips - 1
    new_features = []
    for i in range(max_len):
        s_idx, e_idx = idxs[i], idxs[i + 1]
        if s_idx < e_idx:
            new_features.append(np.mean(features[s_idx:e_idx], axis=0))
        else:
            new_features.append(features[s_idx])
    new_features = np.asarray(new_features)
    return new_features


def compute_overlap(pred, gt):
    # check format
    assert isinstance(pred, list) and isinstance(gt, list)
    pred_is_list = isinstance(pred[0], list)
    gt_is_list = isinstance(gt[0], list)
    pred = pred if pred_is_list else [pred]
    gt = gt if gt_is_list else [gt]
    # compute overlap
    pred, gt = np.array(pred), np.array(gt)
    inter_left = np.maximum(pred[:, 0, None], gt[None, :, 0])
    inter_right = np.minimum(pred[:, 1, None], gt[None, :, 1])
    inter = np.maximum(0.0, inter_right - inter_left)
    union_left = np.minimum(pred[:, 0, None], gt[None, :, 0])
    union_right = np.maximum(pred[:, 1, None], gt[None, :, 1])
    union = np.maximum(1e-12, union_right - union_left)
    overlap = 1.0 * inter / union
    # reformat output
    overlap = overlap if gt_is_list else overlap[:, 0]
    overlap = overlap if pred_is_list else overlap[0]
    return overlap


def time_to_index(start_time, end_time, num_units, duration):
    s_times = np.arange(0, num_units).astype(np.float32) / float(num_units) * duration
    e_times = np.arange(1, num_units + 1).astype(np.float32) / float(num_units) * duration
    candidates = np.stack([np.repeat(s_times[:, None], repeats=num_units, axis=1),
                           np.repeat(e_times[None, :], repeats=num_units, axis=0)], axis=2).reshape((-1, 2))
    overlaps = compute_overlap(candidates.tolist(), [start_time, end_time]).reshape(num_units, num_units)
    start_index = np.argmax(overlaps) // num_units
    end_index = np.argmax(overlaps) % num_units
    return start_index, end_index


def load_yaml(filename):
    try:
        with open(filename, 'r') as file:
            return yaml.safe_load(file)
    except yaml.YAMLError as exc:
        print(f"Error parsing YAML file: {exc}")
        return None
    except FileNotFoundError:
        print(f"File not found: {filename}")
        return None


def load_pickle(filename):
    with open(filename, "rb") as f:
        return pickle.load(f)


def save_pickle(data, filename):
    with open(filename, "wb") as f:
        pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL)


def load_json(filename):
    with open(filename, "r") as f:
        return json.load(f)


def save_json(data, filename, save_pretty=False, sort_keys=False):
    with open(filename, "w") as f:
        if save_pretty:
            f.write(json.dumps(data, indent=4, sort_keys=sort_keys))
        else:
            json.dump(data, f)


def load_jsonl(filename):
    with open(filename, "r") as f:
        return [json.loads(l.strip("\n")) for l in f.readlines()]


def save_jsonl(data, filename):
    """data is a list"""
    with open(filename, "w") as f:
        f.write("\n".join([json.dumps(e) for e in data]))


def save_lines(list_of_str, filepath):
    with open(filepath, "w") as f:
        f.write("\n".join(list_of_str))


def read_lines(filepath):
    with open(filepath, "r") as f:
        return [e.strip("\n") for e in f.readlines()]


def mkdirp(p):
    if not os.path.exists(p):
        os.makedirs(p)


def flat_list_of_lists(l):
    """flatten a list of lists [[1,2], [3,4]] to [1,2,3,4]"""
    return [item for sublist in l for item in sublist]


def convert_to_seconds(hms_time):
    """ convert '00:01:12' to 72 seconds.
    :hms_time (str): time in comma separated string, e.g. '00:01:12'
    :return (int): time in seconds, e.g. 72
    """
    times = [float(t) for t in hms_time.split(":")]
    return times[0] * 3600 + times[1] * 60 + times[2]


def get_video_name_from_url(url):
    return url.split("/")[-1][:-4]


def merge_dicts(list_dicts):
    merged_dict = list_dicts[0].copy()
    for i in range(1, len(list_dicts)):
        merged_dict.update(list_dicts[i])
    return merged_dict


def l2_normalize_np_array(np_array, eps=1e-5):
    """np_array: np.ndarray, (*, D), where the last dim will be normalized"""
    return np_array / (np.linalg.norm(np_array, axis=-1, keepdims=True) + eps)


def make_zipfile(src_dir, save_path, enclosing_dir="", exclude_dirs=None, exclude_extensions=None,
                 exclude_dirs_substring=None):
    """make a zip file of root_dir, save it to save_path.
    exclude_paths will be excluded if it is a subdir of root_dir.
    An enclosing_dir is added is specified.
    """
    abs_src = os.path.abspath(src_dir)
    with zipfile.ZipFile(save_path, "w") as zf:
        for dirname, subdirs, files in os.walk(src_dir):
            if exclude_dirs is not None:
                for e_p in exclude_dirs:
                    if e_p in subdirs:
                        subdirs.remove(e_p)
            if exclude_dirs_substring is not None:
                to_rm = []
                for d in subdirs:
                    if exclude_dirs_substring in d:
                        to_rm.append(d)
                for e in to_rm:
                    subdirs.remove(e)
            arcname = os.path.join(enclosing_dir, dirname[len(abs_src) + 1:])
            zf.write(dirname, arcname)
            for filename in files:
                if exclude_extensions is not None:
                    if os.path.splitext(filename)[1] in exclude_extensions:
                        continue  # do not zip it
                absname = os.path.join(dirname, filename)
                arcname = os.path.join(enclosing_dir, absname[len(abs_src) + 1:])
                zf.write(absname, arcname)


class AverageMeter(object):
    """Computes and stores the average and current/max/min value"""
    def __init__(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0
        self.max = -1e10
        self.min = 1e10
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0
        self.max = -1e10
        self.min = 1e10

    def update(self, val, n=1):
        self.max = max(val, self.max)
        self.min = min(val, self.min)
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


def dissect_by_lengths(np_array, lengths, dim=0, assert_equal=True):
    """Dissect an array (N, D) into a list a sub-array,
    np_array.shape[0] == sum(lengths), Output is a list of nd arrays, singlton dimention is kept"""
    if assert_equal:
        assert len(np_array) == sum(lengths)
    length_indices = [0, ]
    for i in range(len(lengths)):
        length_indices.append(length_indices[i] + lengths[i])
    if dim == 0:
        array_list = [np_array[length_indices[i]:length_indices[i+1]] for i in range(len(lengths))]
    elif dim == 1:
        array_list = [np_array[:, length_indices[i]:length_indices[i + 1]] for i in range(len(lengths))]
    elif dim == 2:
        array_list = [np_array[:, :, length_indices[i]:length_indices[i + 1]] for i in range(len(lengths))]
    else:
        raise NotImplementedError
    return array_list


def get_ratio_from_counter(counter_obj, threshold=200):
    keys = counter_obj.keys()
    values = counter_obj.values()
    filtered_values = [counter_obj[k] for k in keys if k > threshold]
    return float(sum(filtered_values)) / sum(values)


def get_show_name(vid_name):
    """
    get tvshow name from vid_name
    :param vid_name: video clip name
    :return: tvshow name
    """
    show_list = ["friends", "met", "castle", "house", "grey"]
    vid_name_prefix = vid_name.split("_")[0]
    show_name = vid_name_prefix if vid_name_prefix in show_list else "bbt"
    return show_name


import time
import logging
import os

def get_logger(dir, tile):
    os.makedirs(dir, exist_ok=True)
    log_file = time.strftime("%Y%m%d_%H%M%S", time.localtime())
    log_file = os.path.join(dir, "{}_{}.log".format(log_file, tile))

    logger = logging.getLogger()
    logger.setLevel('DEBUG')
    BASIC_FORMAT = "%(levelname)s:%(message)s"
    # DATE_FORMAT = '%Y-%m-%d %H:%M:%S'
    formatter = logging.Formatter(BASIC_FORMAT)
    chlr = logging.StreamHandler()
    chlr.setFormatter(formatter)

    fhlr = logging.FileHandler(log_file) 
    fhlr.setFormatter(formatter)
    fhlr.setLevel('INFO') 

    logger.addHandler(chlr)
    logger.addHandler(fhlr)
    return logger