File size: 1,213 Bytes
d04e6d6
4ae103e
d04e6d6
 
4ae103e
 
 
 
 
 
 
 
d04e6d6
 
4ae103e
d04e6d6
4ae103e
d04e6d6
4ae103e
d04e6d6
4ae103e
 
 
 
d04e6d6
4ae103e
d04e6d6
4ae103e
 
 
d04e6d6
4ae103e
 
 
 
 
 
 
d04e6d6
4ae103e
 
d04e6d6
4ae103e
 
d04e6d6
4ae103e
d04e6d6
4ae103e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
license: apache-2.0
base_model: llava-hf/llava-onevision-qwen2-7b-ov-hf
tags:
- llava
- llava-onevision
- weather
- satellite
- morocco
- meteorology
- qlora
- fine-tuned
---

# LLaVA-OneVision Weather Analysis - QLoRA

Fine-tuned using **QLoRA** technique for weather satellite imagery analysis.

## Model Details

- **Base Model:** llava-hf/llava-onevision-qwen2-7b-ov-hf
- **Technique:** QLoRA
- **Domain:** Weather satellite imagery analysis
- **Dataset:** Weather satellite images with meteorological metadata

## Usage

```python
from transformers import LlavaOnevisionForConditionalGeneration, AutoProcessor
import torch

# Load base model
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
    "llava-hf/llava-onevision-qwen2-7b-ov-hf",
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
processor = AutoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf")

# Load fine-tuned adapter
model.load_adapter("azdin/llava-onevision-weather-qlora")

# Use for weather analysis...
```

## Training Details

- **Technique:** QLoRA
- **Quantization:** 4-bit NF4
- **Training Data:** Weather satellite imagery with metadata
- **Target Modules:** Attention and projection layers