File size: 1,213 Bytes
d04e6d6 4ae103e d04e6d6 4ae103e d04e6d6 4ae103e d04e6d6 4ae103e d04e6d6 4ae103e d04e6d6 4ae103e d04e6d6 4ae103e d04e6d6 4ae103e d04e6d6 4ae103e d04e6d6 4ae103e d04e6d6 4ae103e d04e6d6 4ae103e d04e6d6 4ae103e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
license: apache-2.0
base_model: llava-hf/llava-onevision-qwen2-7b-ov-hf
tags:
- llava
- llava-onevision
- weather
- satellite
- morocco
- meteorology
- qlora
- fine-tuned
---
# LLaVA-OneVision Weather Analysis - QLoRA
Fine-tuned using **QLoRA** technique for weather satellite imagery analysis.
## Model Details
- **Base Model:** llava-hf/llava-onevision-qwen2-7b-ov-hf
- **Technique:** QLoRA
- **Domain:** Weather satellite imagery analysis
- **Dataset:** Weather satellite images with meteorological metadata
## Usage
```python
from transformers import LlavaOnevisionForConditionalGeneration, AutoProcessor
import torch
# Load base model
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
"llava-hf/llava-onevision-qwen2-7b-ov-hf",
torch_dtype=torch.bfloat16,
device_map="auto"
)
processor = AutoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf")
# Load fine-tuned adapter
model.load_adapter("azdin/llava-onevision-weather-qlora")
# Use for weather analysis...
```
## Training Details
- **Technique:** QLoRA
- **Quantization:** 4-bit NF4
- **Training Data:** Weather satellite imagery with metadata
- **Target Modules:** Attention and projection layers
|