boraoxkan commited on
Commit
07ae083
·
verified ·
1 Parent(s): a66fd25

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +182 -152
README.md CHANGED
@@ -1,210 +1,240 @@
1
  ---
2
- base_model: unsloth/Qwen2.5-Coder-7B-Instruct-bnb-4bit
 
 
3
  library_name: peft
4
- pipeline_tag: text-generation
5
  tags:
6
- - base_model:adapter:unsloth/Qwen2.5-Coder-7B-Instruct-bnb-4bit
 
 
 
 
 
7
  - lora
 
8
  - sft
9
  - transformers
10
  - trl
11
- - unsloth
 
 
 
 
 
 
12
  ---
13
 
14
- # Model Card for Model ID
15
-
16
- <!-- Provide a quick summary of what the model is/does. -->
17
-
18
-
19
-
20
- ## Model Details
21
-
22
- ### Model Description
23
-
24
- <!-- Provide a longer summary of what this model is. -->
25
-
26
-
27
-
28
- - **Developed by:** [More Information Needed]
29
- - **Funded by [optional]:** [More Information Needed]
30
- - **Shared by [optional]:** [More Information Needed]
31
- - **Model type:** [More Information Needed]
32
- - **Language(s) (NLP):** [More Information Needed]
33
- - **License:** [More Information Needed]
34
- - **Finetuned from model [optional]:** [More Information Needed]
35
-
36
- ### Model Sources [optional]
37
-
38
- <!-- Provide the basic links for the model. -->
39
-
40
- - **Repository:** [More Information Needed]
41
- - **Paper [optional]:** [More Information Needed]
42
- - **Demo [optional]:** [More Information Needed]
43
-
44
- ## Uses
45
-
46
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
47
-
48
- ### Direct Use
49
-
50
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
51
-
52
- [More Information Needed]
53
-
54
- ### Downstream Use [optional]
55
-
56
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
57
-
58
- [More Information Needed]
59
-
60
- ### Out-of-Scope Use
61
-
62
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
63
-
64
- [More Information Needed]
65
-
66
- ## Bias, Risks, and Limitations
67
-
68
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
69
-
70
- [More Information Needed]
71
 
72
- ### Recommendations
73
 
74
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
75
 
76
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
77
 
78
- ## How to Get Started with the Model
79
 
80
- Use the code below to get started with the model.
81
-
82
- [More Information Needed]
83
-
84
- ## Training Details
85
-
86
- ### Training Data
87
-
88
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
89
-
90
- [More Information Needed]
91
-
92
- ### Training Procedure
93
-
94
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
95
-
96
- #### Preprocessing [optional]
97
-
98
- [More Information Needed]
99
-
100
-
101
- #### Training Hyperparameters
102
-
103
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
104
-
105
- #### Speeds, Sizes, Times [optional]
106
-
107
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
108
-
109
- [More Information Needed]
110
-
111
- ## Evaluation
112
-
113
- <!-- This section describes the evaluation protocols and provides the results. -->
114
-
115
- ### Testing Data, Factors & Metrics
116
-
117
- #### Testing Data
118
-
119
- <!-- This should link to a Dataset Card if possible. -->
120
 
121
- [More Information Needed]
122
 
123
- #### Factors
124
 
125
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
126
 
127
- [More Information Needed]
 
 
 
 
128
 
129
- #### Metrics
130
 
131
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
132
 
133
- [More Information Needed]
 
 
 
 
 
 
 
134
 
135
- ### Results
136
 
137
- [More Information Needed]
138
 
139
- #### Summary
 
 
140
 
 
 
 
 
 
 
 
141
 
 
 
142
 
143
- ## Model Examination [optional]
 
 
 
 
 
 
144
 
145
- <!-- Relevant interpretability work for the model goes here -->
 
 
146
 
147
- [More Information Needed]
148
 
149
- ## Environmental Impact
150
 
151
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
152
 
153
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
 
 
 
 
 
154
 
155
- - **Hardware Type:** [More Information Needed]
156
- - **Hours used:** [More Information Needed]
157
- - **Cloud Provider:** [More Information Needed]
158
- - **Compute Region:** [More Information Needed]
159
- - **Carbon Emitted:** [More Information Needed]
160
 
161
- ## Technical Specifications [optional]
 
162
 
163
- ### Model Architecture and Objective
 
 
 
 
164
 
165
- [More Information Needed]
 
166
 
167
- ### Compute Infrastructure
 
 
 
168
 
169
- [More Information Needed]
170
 
171
- #### Hardware
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
 
173
- [More Information Needed]
174
 
175
- #### Software
176
 
177
- [More Information Needed]
 
 
 
 
 
 
178
 
179
- ## Citation [optional]
180
 
181
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182
 
183
- **BibTeX:**
184
 
185
- [More Information Needed]
186
 
187
- **APA:**
 
 
 
188
 
189
- [More Information Needed]
190
 
191
- ## Glossary [optional]
192
 
193
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## More Information [optional]
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
200
 
201
- ## Model Card Authors [optional]
202
 
203
- [More Information Needed]
204
 
205
- ## Model Card Contact
206
 
207
- [More Information Needed]
208
- ### Framework versions
209
 
210
- - PEFT 0.18.0
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ license: mit
5
  library_name: peft
 
6
  tags:
7
+ - code-review
8
+ - code-analysis
9
+ - security
10
+ - bug-detection
11
+ - vulnerability-detection
12
+ - qwen2
13
  - lora
14
+ - unsloth
15
  - sft
16
  - transformers
17
  - trl
18
+ base_model: unsloth/Qwen2.5-Coder-7B-Instruct-bnb-4bit
19
+ pipeline_tag: text-generation
20
+ datasets:
21
+ - custom
22
+ model-index:
23
+ - name: codereview-ai
24
+ results: []
25
  ---
26
 
27
+ <div align="center">
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
+ # CodeReview AI
30
 
31
+ **Automated Code Review with Fine-tuned LLMs**
32
 
33
+ [![GitHub](https://img.shields.io/badge/GitHub-Repository-blue?logo=github)](https://github.com/boraoxkan/CodeReview)
34
+ [![License](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)
35
+ [![Base Model](https://img.shields.io/badge/Base-Qwen2.5--Coder--7B-purple)](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct)
36
 
37
+ </div>
38
 
39
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
+ ## Overview
42
 
43
+ A fine-tuned code review model that automatically detects **bugs**, **security vulnerabilities**, and **code quality issues** across multiple programming languages.
44
 
45
+ ### Key Features
46
 
47
+ - **Multi-Language**: Python, JavaScript, Java, C++, Go, Rust, TypeScript, C#, SQL
48
+ - **Security Focus**: Detects OWASP Top 10 vulnerabilities
49
+ - **Quality Scoring**: 0-100 score with explanations
50
+ - **Auto-Fix**: Provides corrected code snippets
51
+ - **Efficient**: 4-bit quantization, runs on 8GB VRAM
52
 
53
+ ---
54
 
55
+ ## Model Details
56
 
57
+ | Property | Value |
58
+ |----------|-------|
59
+ | **Base Model** | Qwen2.5-Coder-7B-Instruct |
60
+ | **Parameters** | 7B |
61
+ | **Fine-tuning** | LoRA (r=16, alpha=16) |
62
+ | **Quantization** | 4-bit NF4 |
63
+ | **Context Length** | 2048 tokens |
64
+ | **Framework** | Unsloth + TRL |
65
 
66
+ ---
67
 
68
+ ## Detected Issues
69
 
70
+ <table>
71
+ <tr>
72
+ <td>
73
 
74
+ **Security**
75
+ - SQL Injection
76
+ - Cross-Site Scripting (XSS)
77
+ - Command Injection
78
+ - Hardcoded Credentials
79
+ - Path Traversal
80
+ - Insecure Deserialization
81
 
82
+ </td>
83
+ <td>
84
 
85
+ **Code Quality**
86
+ - Memory Leaks
87
+ - Race Conditions
88
+ - Null Pointer Dereference
89
+ - Off-by-One Errors
90
+ - Resource Leaks
91
+ - Infinite Loops
92
 
93
+ </td>
94
+ </tr>
95
+ </table>
96
 
97
+ ---
98
 
99
+ ## Quick Start
100
 
101
+ ```python
102
+ from unsloth import FastLanguageModel
103
 
104
+ # Load model
105
+ model, tokenizer = FastLanguageModel.from_pretrained(
106
+ model_name="boraoxkan/codereview-ai",
107
+ max_seq_length=2048,
108
+ load_in_4bit=True,
109
+ )
110
+ FastLanguageModel.for_inference(model)
111
 
112
+ # Analyze code
113
+ prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
 
 
 
114
 
115
+ ### Instruction:
116
+ Analyze this Python code for defects.
117
 
118
+ ### Input:
119
+ def get_user(username):
120
+ query = "SELECT * FROM users WHERE username = '" + username + "'"
121
+ cursor.execute(query)
122
+ return cursor.fetchone()
123
 
124
+ ### Response:
125
+ """
126
 
127
+ inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
128
+ outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.1)
129
+ result = tokenizer.decode(outputs[0])
130
+ ```
131
 
132
+ ---
133
 
134
+ ## Example Output
135
+
136
+ **Input Code (SQL Injection vulnerability):**
137
+ ```python
138
+ def get_user(username):
139
+ query = "SELECT * FROM users WHERE username = '" + username + "'"
140
+ cursor.execute(query)
141
+ ```
142
+
143
+ **Model Output:**
144
+ ```json
145
+ {
146
+ "code_quality_score": 20,
147
+ "critical_issues": [
148
+ "SQL Injection vulnerability due to direct string concatenation"
149
+ ],
150
+ "suggestions": [
151
+ "Use parameterized queries to prevent SQL injection",
152
+ "Handle database connections properly"
153
+ ],
154
+ "fixed_code": "def get_user(username):\n query = \"SELECT * FROM users WHERE username = ?\"\n cursor.execute(query, (username,))"
155
+ }
156
+ ```
157
 
158
+ ---
159
 
160
+ ## Score Guidelines
161
 
162
+ | Score | Level | Description |
163
+ |:-----:|:-----:|-------------|
164
+ | 0-30 | **Critical** | Severe security vulnerabilities |
165
+ | 31-50 | **Poor** | Significant issues present |
166
+ | 51-70 | **Fair** | Some improvements needed |
167
+ | 71-85 | **Good** | Minor issues only |
168
+ | 86-100 | **Excellent** | Clean, secure code |
169
 
170
+ ---
171
 
172
+ ## Training
173
+
174
+ | Parameter | Value |
175
+ |-----------|-------|
176
+ | Dataset | ~500 synthetic samples |
177
+ | Steps | 120 |
178
+ | Batch Size | 1 (effective: 4) |
179
+ | Learning Rate | 2e-4 |
180
+ | Optimizer | AdamW 8-bit |
181
+ | Precision | BF16 |
182
+ | Hardware | RTX 3070 (8GB) |
183
+ | Time | ~40 minutes |
184
+
185
+ ### LoRA Config
186
+
187
+ ```python
188
+ r = 16
189
+ lora_alpha = 16
190
+ lora_dropout = 0
191
+ target_modules = [
192
+ "q_proj", "k_proj", "v_proj", "o_proj",
193
+ "gate_proj", "up_proj", "down_proj"
194
+ ]
195
+ ```
196
 
197
+ ---
198
 
199
+ ## Limitations
200
 
201
+ - Context limited to 2048 tokens
202
+ - Optimized for single-function analysis
203
+ - May produce false positives for complex patterns
204
+ - Training data is synthetically generated
205
 
206
+ ---
207
 
208
+ ## Links
209
 
210
+ | Resource | Link |
211
+ |----------|------|
212
+ | GitHub Repository | [boraoxkan/CodeReview](https://github.com/boraoxkan/CodeReview) |
213
+ | Base Model | [Qwen2.5-Coder-7B](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) |
214
+ | Unsloth | [unslothai/unsloth](https://github.com/unslothai/unsloth) |
215
 
216
+ ---
217
 
218
+ ## Citation
219
 
220
+ ```bibtex
221
+ @software{codereview_ai_2025,
222
+ title = {CodeReview AI: Automated Code Analysis with Fine-tuned LLMs},
223
+ author = {Bora Ozkan},
224
+ year = {2025},
225
+ url = {https://huggingface.co/boraoxkan/codereview-ai}
226
+ }
227
+ ```
228
 
229
+ ---
230
 
231
+ ## License
232
 
233
+ MIT License - See [LICENSE](https://github.com/boraoxkan/CodeReview/blob/main/LICENSE) for details.
234
 
235
+ ---
 
236
 
237
+ <div align="center">
238
+ <b>Built with Unsloth & Qwen2.5-Coder</b><br>
239
+ <sub>Making code reviews smarter, one bug at a time.</sub>
240
+ </div>