File size: 4,063 Bytes
7275171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d1dafb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
license: mit
language: en
library_name: transformers
tags:
- modular-intelligence
- structured-reasoning
- modular-system
- system-level-ai
- gpt2
- reasoning-scaffolds
- auto-routing
- gradio
pipeline_tag: text-generation
base_model: openai-community/gpt2
model_type: gpt2
datasets: []
widget:
- text: "Write a strategy memo: Should we expand into a new city?"
---
# Modular Intelligence Demo — Model Card

## Overview

This Space demonstrates a **Modular Intelligence** architecture built on top of a small, open text-generation model (default: `gpt2` from Hugging Face Transformers).

The focus is on:

- Structured, modular reasoning patterns
- Separation of **generators** (modules) and **checkers** (verifiers)
- Deterministic output formats
- Domain-agnostic usage

The underlying model is intentionally small and generic so the architecture can run on free CPU tiers and be easily swapped for stronger models.

---

## Model Details

### Base Model

- **Name:** `gpt2`
- **Type:** Causal language model (decoder-only Transformer)
- **Provider:** Hugging Face (OpenAI GPT-2 weights via HF Hub)
- **Task:** Text generation

### Intended Use in This Space

The model is used as a **generic language engine** behind:

- Generator modules:  
  - Analysis Note  
  - Document Explainer  
  - Strategy Memo  
  - Message/Post Reply  
  - Profile/Application Draft  
  - System/Architecture Blueprint  
  - Modular Brainstorm  

- Checker modules:  
  - Analysis Note Checker  
  - Document Explainer Checker  
  - Strategy Memo Checker  
  - Style & Voice Checker  
  - Profile Checker  
  - System Checker  

The intelligence comes from the **module specifications and checker prompts**, not from the raw model alone.

---

## Intended Use Cases

This demo is intended for:

- Exploring **Modular Intelligence** as an architecture:
  - Module contracts (inputs → structured outputs)
  - Paired checkers for verification
  - Stable output formats
- Educational and experimental use:
  - Showing how to structure reasoning tasks
  - Demonstrating generators vs checkers
  - Prototyping new modules for any domain

It is **not** intended as a production-grade reasoning system in its current form.

---

## Out-of-Scope / Misuse

This setup and base model **should not** be relied on for:

- High-stakes decisions (law, medicine, finance, safety)
- Factual claims where accuracy is critical
- Personal advice with real-world consequences
- Any use requiring guarantees of truth, completeness, or legal/compliance correctness

All outputs must be **reviewed by a human** before use.

---

## Limitations

### Model-Level Limitations

- `gpt2` is:
  - Small by modern standards
  - Trained on older, general web data
  - Not tuned for instruction-following
  - Not tuned for safety or domain-specific reasoning

Expect:

- Hallucinations / fabricated details
- Incomplete or shallow analysis
- Inconsistent adherence to strict formats
- Limited context length

### Architecture-Level Limitations

Even with Modular Intelligence patterns:

- Checkers are still language-model-based
- Verification is heuristic, not formal proof
- Complex domains require domain experts to design the modules/checkers
- This Space does not store memory, logs, or regression tests

---

## Ethical and Safety Considerations

- Do not treat outputs as professional advice.  
- Do not use for:
  - Discriminatory or harmful content
  - Harassment
  - Misinformation campaigns
- Make sure users know:
  - This is an **architecture demo**, not a final product.
  - All content is generated by a language model and may be wrong.

If you adapt this to high-stakes domains, you must:

- Swap in stronger, more aligned models
- Add strict validation layers
- Add logging, monitoring, and human review
- Perform domain-specific evaluations and audits

---

## How to Swap Models

You can replace `gpt2` with any compatible text-generation model:

1. Edit `app.py`:

   ```python
   from transformers import pipeline

   llm = pipeline("text-generation", model="gpt2", max_new_tokens=512)