conplag1_codeberta_ep30_bs16_lr3e-05_l512_s42_ppy_loss
This model is a fine-tuned version of huggingface/CodeBERTa-small-v1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4615
- Accuracy: 0.8029
- Recall: 0.7368
- Precision: 0.6222
- F1: 0.6747
- F Beta Score: 0.6973
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | F Beta Score |
|---|---|---|---|---|---|---|---|---|
| 0.5956 | 1.0 | 40 | 0.5593 | 0.6204 | 0.8158 | 0.4079 | 0.5439 | 0.6238 |
| 0.5237 | 2.0 | 80 | 0.4615 | 0.8029 | 0.7368 | 0.6222 | 0.6747 | 0.6973 |
| 0.4429 | 3.0 | 120 | 0.5951 | 0.7299 | 0.8421 | 0.5079 | 0.6337 | 0.7003 |
| 0.1843 | 4.0 | 160 | 0.9057 | 0.8540 | 0.5263 | 0.9091 | 0.6667 | 0.6047 |
| 0.1408 | 5.0 | 200 | 1.1337 | 0.8467 | 0.5 | 0.9048 | 0.6441 | 0.5798 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.1.0
- Tokenizers 0.21.4
- Downloads last month
- 11
Model tree for buelfhood/conplag1_codeberta_ep30_bs16_lr3e-05_l512_s42_ppy_loss
Base model
huggingface/CodeBERTa-small-v1