conplag2_codeberta_ep30_bs16_lr3e-05_l512_s42_ppy_loss
This model is a fine-tuned version of huggingface/CodeBERTa-small-v1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4655
- Accuracy: 0.7810
- Recall: 0.8158
- Precision: 0.5741
- F1: 0.6739
- F Beta Score: 0.7222
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | F Beta Score |
|---|---|---|---|---|---|---|---|---|
| 0.5758 | 1.0 | 40 | 0.5002 | 0.7956 | 0.5789 | 0.6471 | 0.6111 | 0.5983 |
| 0.5552 | 2.0 | 80 | 0.4655 | 0.7810 | 0.8158 | 0.5741 | 0.6739 | 0.7222 |
| 0.4417 | 3.0 | 120 | 0.5749 | 0.8394 | 0.4737 | 0.9 | 0.6207 | 0.5545 |
| 0.2729 | 4.0 | 160 | 0.7580 | 0.8467 | 0.5 | 0.9048 | 0.6441 | 0.5798 |
| 0.2565 | 5.0 | 200 | 0.8097 | 0.8686 | 0.6053 | 0.8846 | 0.7188 | 0.6704 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.1.0
- Tokenizers 0.21.4
- Downloads last month
- 11
Model tree for buelfhood/conplag2_codeberta_ep30_bs16_lr3e-05_l512_s42_ppy_loss
Base model
huggingface/CodeBERTa-small-v1