adding pathfinding_nn.py alongside app.py
Browse files- pathfinding_nn.py +742 -0
pathfinding_nn.py
ADDED
|
@@ -0,0 +1,742 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import numpy as np
|
| 5 |
+
from typing import Tuple, List, Optional
|
| 6 |
+
|
| 7 |
+
class VoxelCNNEncoder(nn.Module):
|
| 8 |
+
"""
|
| 9 |
+
Enhanced 3D CNN encoder for voxelized obstruction data with multi-channel support.
|
| 10 |
+
Processes environment obstacles, start position, and goal position.
|
| 11 |
+
"""
|
| 12 |
+
def __init__(self,
|
| 13 |
+
input_channels=3, # obstacles + start + goal
|
| 14 |
+
filters_1=32,
|
| 15 |
+
kernel_size_1=(3, 3, 3),
|
| 16 |
+
pool_size_1=(2, 2, 2),
|
| 17 |
+
filters_2=64,
|
| 18 |
+
kernel_size_2=(3, 3, 3),
|
| 19 |
+
pool_size_2=(2, 2, 2),
|
| 20 |
+
filters_3=128,
|
| 21 |
+
kernel_size_3=(3, 3, 3),
|
| 22 |
+
pool_size_3=(2, 2, 2),
|
| 23 |
+
dense_units=512,
|
| 24 |
+
input_voxel_dim=(32, 32, 32),
|
| 25 |
+
dropout_rate=0.2
|
| 26 |
+
):
|
| 27 |
+
super(VoxelCNNEncoder, self).__init__()
|
| 28 |
+
|
| 29 |
+
self.input_voxel_dim = input_voxel_dim
|
| 30 |
+
self.input_channels = input_channels
|
| 31 |
+
|
| 32 |
+
# First 3D Convolutional Block (Conv-BN-ReLU)
|
| 33 |
+
padding_1 = tuple([(k - 1) // 2 for k in kernel_size_1])
|
| 34 |
+
self.conv1 = nn.Conv3d(input_channels, filters_1, kernel_size_1, padding=padding_1)
|
| 35 |
+
self.bn1 = nn.BatchNorm3d(filters_1)
|
| 36 |
+
self.pool1 = nn.MaxPool3d(pool_size_1)
|
| 37 |
+
self.dropout1 = nn.Dropout3d(dropout_rate)
|
| 38 |
+
|
| 39 |
+
# Second 3D Convolutional Block (Conv-BN-ReLU)
|
| 40 |
+
padding_2 = tuple([(k - 1) // 2 for k in kernel_size_2])
|
| 41 |
+
self.conv2 = nn.Conv3d(filters_1, filters_2, kernel_size_2, padding=padding_2)
|
| 42 |
+
self.bn2 = nn.BatchNorm3d(filters_2)
|
| 43 |
+
self.pool2 = nn.MaxPool3d(pool_size_2)
|
| 44 |
+
self.dropout2 = nn.Dropout3d(dropout_rate)
|
| 45 |
+
|
| 46 |
+
# Third 3D Convolutional Block (Conv-BN-ReLU)
|
| 47 |
+
padding_3 = tuple([(k - 1) // 2 for k in kernel_size_3])
|
| 48 |
+
self.conv3 = nn.Conv3d(filters_2, filters_3, kernel_size_3, padding=padding_3)
|
| 49 |
+
self.bn3 = nn.BatchNorm3d(filters_3)
|
| 50 |
+
self.pool3 = nn.MaxPool3d(pool_size_3)
|
| 51 |
+
self.dropout3 = nn.Dropout3d(dropout_rate)
|
| 52 |
+
|
| 53 |
+
# Calculate flattened size
|
| 54 |
+
self._to_linear_input_size = self._get_conv_output_size()
|
| 55 |
+
|
| 56 |
+
# Dense layers with residual connection
|
| 57 |
+
self.fc1 = nn.Linear(self._to_linear_input_size, dense_units)
|
| 58 |
+
self.fc2 = nn.Linear(dense_units, dense_units)
|
| 59 |
+
self.dropout_fc = nn.Dropout(dropout_rate)
|
| 60 |
+
|
| 61 |
+
def _get_conv_output_size(self):
|
| 62 |
+
with torch.no_grad():
|
| 63 |
+
dummy_input = torch.zeros(1, self.input_channels, *self.input_voxel_dim)
|
| 64 |
+
# Standardized Conv-BN-ReLU order
|
| 65 |
+
x = self.conv1(dummy_input)
|
| 66 |
+
x = self.bn1(x)
|
| 67 |
+
x = F.relu(x)
|
| 68 |
+
x = self.pool1(x)
|
| 69 |
+
x = self.dropout1(x)
|
| 70 |
+
|
| 71 |
+
x = self.conv2(x)
|
| 72 |
+
x = self.bn2(x)
|
| 73 |
+
x = F.relu(x)
|
| 74 |
+
x = self.pool2(x)
|
| 75 |
+
x = self.dropout2(x)
|
| 76 |
+
|
| 77 |
+
x = self.conv3(x)
|
| 78 |
+
x = self.bn3(x)
|
| 79 |
+
x = F.relu(x)
|
| 80 |
+
x = self.pool3(x)
|
| 81 |
+
x = self.dropout3(x)
|
| 82 |
+
|
| 83 |
+
return x.numel()
|
| 84 |
+
|
| 85 |
+
def forward(self, x):
|
| 86 |
+
# First conv block (Conv-BN-ReLU)
|
| 87 |
+
x = self.conv1(x)
|
| 88 |
+
x = self.bn1(x)
|
| 89 |
+
x = F.relu(x)
|
| 90 |
+
x = self.pool1(x)
|
| 91 |
+
x = self.dropout1(x)
|
| 92 |
+
|
| 93 |
+
# Second conv block (Conv-BN-ReLU)
|
| 94 |
+
x = self.conv2(x)
|
| 95 |
+
x = self.bn2(x)
|
| 96 |
+
x = F.relu(x)
|
| 97 |
+
x = self.pool2(x)
|
| 98 |
+
x = self.dropout2(x)
|
| 99 |
+
|
| 100 |
+
# Third conv block (Conv-BN-ReLU)
|
| 101 |
+
x = self.conv3(x)
|
| 102 |
+
x = self.bn3(x)
|
| 103 |
+
x = F.relu(x)
|
| 104 |
+
x = self.pool3(x)
|
| 105 |
+
x = self.dropout3(x)
|
| 106 |
+
|
| 107 |
+
# Flatten and dense layers
|
| 108 |
+
x = x.view(x.size(0), -1)
|
| 109 |
+
x1 = F.relu(self.fc1(x))
|
| 110 |
+
x1 = self.dropout_fc(x1)
|
| 111 |
+
x2 = F.relu(self.fc2(x1))
|
| 112 |
+
|
| 113 |
+
# Residual connection
|
| 114 |
+
return x1 + x2
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
class PositionEncoder(nn.Module):
|
| 118 |
+
"""
|
| 119 |
+
Encodes start and goal positions with learned embeddings.
|
| 120 |
+
"""
|
| 121 |
+
def __init__(self, voxel_dim=(32, 32, 32), position_embed_dim=64):
|
| 122 |
+
super(PositionEncoder, self).__init__()
|
| 123 |
+
self.voxel_dim = voxel_dim
|
| 124 |
+
self.position_embed_dim = position_embed_dim
|
| 125 |
+
|
| 126 |
+
# Calculate dimensions for each axis to sum to position_embed_dim
|
| 127 |
+
dim_per_axis = position_embed_dim // 3
|
| 128 |
+
remainder = position_embed_dim % 3
|
| 129 |
+
|
| 130 |
+
x_dim = dim_per_axis + (1 if remainder > 0 else 0)
|
| 131 |
+
y_dim = dim_per_axis + (1 if remainder > 1 else 0)
|
| 132 |
+
z_dim = dim_per_axis
|
| 133 |
+
|
| 134 |
+
# Learned position embeddings for each dimension
|
| 135 |
+
self.x_embed = nn.Embedding(voxel_dim[0], x_dim)
|
| 136 |
+
self.y_embed = nn.Embedding(voxel_dim[1], y_dim)
|
| 137 |
+
self.z_embed = nn.Embedding(voxel_dim[2], z_dim)
|
| 138 |
+
|
| 139 |
+
# Additional processing - fixed input dimension
|
| 140 |
+
self.fc = nn.Linear(2 * position_embed_dim, position_embed_dim)
|
| 141 |
+
|
| 142 |
+
def forward(self, positions):
|
| 143 |
+
"""
|
| 144 |
+
positions: (batch_size, 2, 3) - [start_pos, goal_pos] with (x, y, z)
|
| 145 |
+
"""
|
| 146 |
+
batch_size = positions.size(0)
|
| 147 |
+
|
| 148 |
+
# Extract coordinates
|
| 149 |
+
# Clamp coordinates defensively to valid index ranges to avoid embedding OOB
|
| 150 |
+
x_coords = positions[:, :, 0].long().clamp_(0, self.voxel_dim[0] - 1) # (batch_size, 2)
|
| 151 |
+
y_coords = positions[:, :, 1].long().clamp_(0, self.voxel_dim[1] - 1) # (batch_size, 2)
|
| 152 |
+
z_coords = positions[:, :, 2].long().clamp_(0, self.voxel_dim[2] - 1) # (batch_size, 2)
|
| 153 |
+
|
| 154 |
+
# Get embeddings
|
| 155 |
+
x_emb = self.x_embed(x_coords) # (batch_size, 2, x_dim)
|
| 156 |
+
y_emb = self.y_embed(y_coords) # (batch_size, 2, y_dim)
|
| 157 |
+
z_emb = self.z_embed(z_coords) # (batch_size, 2, z_dim)
|
| 158 |
+
|
| 159 |
+
# Concatenate embeddings
|
| 160 |
+
pos_emb = torch.cat([x_emb, y_emb, z_emb], dim=-1) # (batch_size, 2, position_embed_dim)
|
| 161 |
+
|
| 162 |
+
# Flatten start and goal embeddings
|
| 163 |
+
pos_emb = pos_emb.view(batch_size, -1) # (batch_size, 2 * position_embed_dim)
|
| 164 |
+
|
| 165 |
+
return F.relu(self.fc(pos_emb))
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
class PathPlannerTransformer(nn.Module):
|
| 169 |
+
"""
|
| 170 |
+
Transformer-based path planner that generates action sequences.
|
| 171 |
+
Fixed token IDs to avoid collision:
|
| 172 |
+
- Actions: 0-5 (Forward, Back, Left, Right, Up, Down)
|
| 173 |
+
- START: 6
|
| 174 |
+
- END: 7
|
| 175 |
+
- PAD: 8 (used only for teacher forcing inputs; targets still use -1 for ignore)
|
| 176 |
+
"""
|
| 177 |
+
def __init__(self,
|
| 178 |
+
env_feature_dim=512,
|
| 179 |
+
pos_feature_dim=64,
|
| 180 |
+
hidden_dim=256,
|
| 181 |
+
num_heads=8,
|
| 182 |
+
num_layers=4,
|
| 183 |
+
max_sequence_length=100,
|
| 184 |
+
num_actions=6, # Forward, Back, Left, Right, Up, Down
|
| 185 |
+
use_end_token=True):
|
| 186 |
+
super(PathPlannerTransformer, self).__init__()
|
| 187 |
+
|
| 188 |
+
self.hidden_dim = hidden_dim
|
| 189 |
+
self.max_sequence_length = max_sequence_length
|
| 190 |
+
self.num_actions = num_actions
|
| 191 |
+
self.use_end_token = use_end_token
|
| 192 |
+
|
| 193 |
+
# Fixed token IDs to avoid collision
|
| 194 |
+
self.start_token_id = num_actions # 6
|
| 195 |
+
self.end_token_id = num_actions + 1 if use_end_token else None # 7
|
| 196 |
+
# Reserve a PAD token for embedding inputs during teacher forcing
|
| 197 |
+
self.pad_token_id = (num_actions + 2) if use_end_token else (num_actions + 1)
|
| 198 |
+
# Total tokens include PAD
|
| 199 |
+
self.total_tokens = (num_actions + 3) if use_end_token else (num_actions + 2)
|
| 200 |
+
|
| 201 |
+
# Feature fusion
|
| 202 |
+
self.feature_fusion = nn.Linear(env_feature_dim + pos_feature_dim, hidden_dim)
|
| 203 |
+
|
| 204 |
+
# Action embeddings
|
| 205 |
+
self.action_embed = nn.Embedding(self.total_tokens, hidden_dim)
|
| 206 |
+
|
| 207 |
+
# Positional encoding - register as buffer for proper device handling
|
| 208 |
+
self.register_buffer('pos_encoding', self._create_positional_encoding(max_sequence_length, hidden_dim))
|
| 209 |
+
|
| 210 |
+
# Transformer decoder
|
| 211 |
+
decoder_layer = nn.TransformerDecoderLayer(
|
| 212 |
+
d_model=hidden_dim,
|
| 213 |
+
nhead=num_heads,
|
| 214 |
+
dim_feedforward=hidden_dim * 4,
|
| 215 |
+
dropout=0.1,
|
| 216 |
+
batch_first=True
|
| 217 |
+
)
|
| 218 |
+
self.transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers)
|
| 219 |
+
|
| 220 |
+
# Output projection
|
| 221 |
+
self.output_proj = nn.Linear(hidden_dim, self.total_tokens)
|
| 222 |
+
|
| 223 |
+
# Turn head (now supervised via BCE-with-logits against turn labels)
|
| 224 |
+
self.turn_penalty_head = nn.Linear(hidden_dim, 1)
|
| 225 |
+
|
| 226 |
+
def _create_positional_encoding(self, max_len, d_model):
|
| 227 |
+
pe = torch.zeros(max_len, d_model)
|
| 228 |
+
position = torch.arange(0, max_len).unsqueeze(1).float()
|
| 229 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(np.log(10000.0) / d_model))
|
| 230 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
| 231 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
| 232 |
+
return pe.unsqueeze(0)
|
| 233 |
+
|
| 234 |
+
def forward(self, env_features, pos_features, target_actions=None):
|
| 235 |
+
"""
|
| 236 |
+
env_features: (batch_size, env_feature_dim)
|
| 237 |
+
pos_features: (batch_size, pos_feature_dim)
|
| 238 |
+
target_actions: (batch_size, seq_len) - for training (contains action IDs 0-5 and END token 7)
|
| 239 |
+
"""
|
| 240 |
+
batch_size = env_features.size(0)
|
| 241 |
+
|
| 242 |
+
# Fuse environment and position features
|
| 243 |
+
fused_features = self.feature_fusion(torch.cat([env_features, pos_features], dim=1))
|
| 244 |
+
|
| 245 |
+
# Create memory (encoder output) by repeating fused features
|
| 246 |
+
memory = fused_features.unsqueeze(1).repeat(1, self.max_sequence_length, 1)
|
| 247 |
+
|
| 248 |
+
if target_actions is not None:
|
| 249 |
+
# Training mode: use teacher forcing
|
| 250 |
+
seq_len = target_actions.size(1)
|
| 251 |
+
|
| 252 |
+
# Create input sequence (START token + target_actions[:-1])
|
| 253 |
+
start_tokens = torch.full((batch_size, 1), self.start_token_id,
|
| 254 |
+
dtype=torch.long, device=target_actions.device)
|
| 255 |
+
input_seq = torch.cat([start_tokens, target_actions[:, :-1]], dim=1)
|
| 256 |
+
# Replace padding (-1) in teacher-forced inputs with PAD token id to avoid OOB in embedding
|
| 257 |
+
input_seq = torch.where(input_seq < 0, torch.full_like(input_seq, self.pad_token_id), input_seq)
|
| 258 |
+
|
| 259 |
+
# Embed actions and add positional encoding
|
| 260 |
+
embedded = self.action_embed(input_seq)
|
| 261 |
+
embedded = embedded + self.pos_encoding[:, :seq_len, :]
|
| 262 |
+
|
| 263 |
+
# Generate attention mask (causal mask)
|
| 264 |
+
tgt_mask = self._generate_square_subsequent_mask(seq_len).to(embedded.device)
|
| 265 |
+
|
| 266 |
+
# Transformer decoder forward pass
|
| 267 |
+
output = self.transformer_decoder(
|
| 268 |
+
tgt=embedded,
|
| 269 |
+
memory=memory[:, :seq_len, :],
|
| 270 |
+
tgt_mask=tgt_mask
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
# Output projections
|
| 274 |
+
action_logits = self.output_proj(output)
|
| 275 |
+
# Turn logits for supervised turn classification
|
| 276 |
+
turn_logits = self.turn_penalty_head(output)
|
| 277 |
+
|
| 278 |
+
return action_logits, turn_logits
|
| 279 |
+
else:
|
| 280 |
+
# Inference mode: generate sequence autoregressively
|
| 281 |
+
return self._generate_path(memory, batch_size)
|
| 282 |
+
|
| 283 |
+
def _generate_square_subsequent_mask(self, sz):
|
| 284 |
+
mask = torch.triu(torch.ones(sz, sz), diagonal=1)
|
| 285 |
+
mask = mask.masked_fill(mask == 1, float('-inf'))
|
| 286 |
+
return mask
|
| 287 |
+
|
| 288 |
+
def _generate_path(self, memory, batch_size):
|
| 289 |
+
"""
|
| 290 |
+
Generate path sequence autoregressively, handling batches correctly.
|
| 291 |
+
Fixes bugs related to premature stopping and inclusion of special tokens.
|
| 292 |
+
"""
|
| 293 |
+
device = memory.device
|
| 294 |
+
|
| 295 |
+
# Start with START token
|
| 296 |
+
input_seq = torch.full((batch_size, 1), self.start_token_id, dtype=torch.long, device=device)
|
| 297 |
+
|
| 298 |
+
# Keep track of sequences that have generated an END token
|
| 299 |
+
is_finished = torch.zeros(batch_size, dtype=torch.bool, device=device)
|
| 300 |
+
|
| 301 |
+
for step in range(self.max_sequence_length):
|
| 302 |
+
# Embed current sequence
|
| 303 |
+
embedded = self.action_embed(input_seq)
|
| 304 |
+
seq_len = embedded.size(1)
|
| 305 |
+
embedded = embedded + self.pos_encoding[:, :seq_len, :]
|
| 306 |
+
|
| 307 |
+
# Generate causal mask
|
| 308 |
+
tgt_mask = self._generate_square_subsequent_mask(seq_len).to(device)
|
| 309 |
+
|
| 310 |
+
# Forward pass
|
| 311 |
+
output = self.transformer_decoder(
|
| 312 |
+
tgt=embedded,
|
| 313 |
+
memory=memory[:, :seq_len, :],
|
| 314 |
+
tgt_mask=tgt_mask
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
# Get next action probabilities from the last token in the sequence
|
| 318 |
+
next_action_logits = self.output_proj(output[:, -1, :])
|
| 319 |
+
next_actions = torch.argmax(next_action_logits, dim=-1, keepdim=True)
|
| 320 |
+
|
| 321 |
+
# Append the predicted actions to the sequence
|
| 322 |
+
input_seq = torch.cat([input_seq, next_actions], dim=1)
|
| 323 |
+
|
| 324 |
+
# Update the finished mask for any sequence that just produced an END token
|
| 325 |
+
if self.use_end_token:
|
| 326 |
+
is_finished |= (next_actions.squeeze(-1) == self.end_token_id)
|
| 327 |
+
|
| 328 |
+
# If all sequences in the batch are finished, we can stop early
|
| 329 |
+
if is_finished.all():
|
| 330 |
+
break
|
| 331 |
+
|
| 332 |
+
# Post-processing to create a clean, dense tensor of valid actions
|
| 333 |
+
# Remove the initial START token from all sequences
|
| 334 |
+
raw_paths = input_seq[:, 1:]
|
| 335 |
+
|
| 336 |
+
clean_paths_list = []
|
| 337 |
+
max_len = 0
|
| 338 |
+
|
| 339 |
+
for i in range(batch_size):
|
| 340 |
+
path = []
|
| 341 |
+
for token_id in raw_paths[i]:
|
| 342 |
+
# Stop decoding for this path if an END token is found
|
| 343 |
+
if self.use_end_token and token_id.item() == self.end_token_id:
|
| 344 |
+
break
|
| 345 |
+
# Only include valid movement actions in the final path
|
| 346 |
+
if token_id.item() < self.num_actions:
|
| 347 |
+
path.append(token_id.item())
|
| 348 |
+
|
| 349 |
+
clean_paths_list.append(path)
|
| 350 |
+
if len(path) > max_len:
|
| 351 |
+
max_len = len(path)
|
| 352 |
+
|
| 353 |
+
# Return an empty tensor if no valid actions were generated
|
| 354 |
+
if max_len == 0:
|
| 355 |
+
return torch.zeros(batch_size, 0, dtype=torch.long, device=device)
|
| 356 |
+
|
| 357 |
+
# Pad all paths to the length of the longest path in the batch
|
| 358 |
+
# We use the END token ID for padding, as downstream functions like
|
| 359 |
+
# check_collisions are designed to ignore non-action tokens.
|
| 360 |
+
pad_value = self.end_token_id if self.use_end_token else self.num_actions
|
| 361 |
+
padded_paths = torch.full((batch_size, max_len), pad_value, dtype=torch.long, device=device)
|
| 362 |
+
|
| 363 |
+
for i, path in enumerate(clean_paths_list):
|
| 364 |
+
if len(path) > 0:
|
| 365 |
+
padded_paths[i, :len(path)] = torch.tensor(path, dtype=torch.long, device=device)
|
| 366 |
+
|
| 367 |
+
return padded_paths
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
class PathfindingNetwork(nn.Module):
|
| 371 |
+
"""
|
| 372 |
+
Complete pathfinding network combining CNN encoder, position encoder, and transformer planner.
|
| 373 |
+
"""
|
| 374 |
+
def __init__(self,
|
| 375 |
+
voxel_dim=(32, 32, 32),
|
| 376 |
+
input_channels=3,
|
| 377 |
+
env_feature_dim=512,
|
| 378 |
+
pos_feature_dim=64,
|
| 379 |
+
hidden_dim=256,
|
| 380 |
+
num_actions=6,
|
| 381 |
+
use_end_token=True):
|
| 382 |
+
super(PathfindingNetwork, self).__init__()
|
| 383 |
+
|
| 384 |
+
self.voxel_dim = voxel_dim
|
| 385 |
+
self.num_actions = num_actions
|
| 386 |
+
|
| 387 |
+
self.voxel_encoder = VoxelCNNEncoder(
|
| 388 |
+
input_channels=input_channels,
|
| 389 |
+
dense_units=env_feature_dim,
|
| 390 |
+
input_voxel_dim=voxel_dim
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
self.position_encoder = PositionEncoder(
|
| 394 |
+
voxel_dim=voxel_dim,
|
| 395 |
+
position_embed_dim=pos_feature_dim
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
self.path_planner = PathPlannerTransformer(
|
| 399 |
+
env_feature_dim=env_feature_dim,
|
| 400 |
+
pos_feature_dim=pos_feature_dim,
|
| 401 |
+
hidden_dim=hidden_dim,
|
| 402 |
+
num_actions=num_actions,
|
| 403 |
+
use_end_token=use_end_token
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
def forward(self, voxel_data, positions, target_actions=None):
|
| 407 |
+
"""
|
| 408 |
+
voxel_data: (batch_size, 3, D, H, W) - [obstacles, start_mask, goal_mask]
|
| 409 |
+
positions: (batch_size, 2, 3) - [start_pos, goal_pos]
|
| 410 |
+
target_actions: (batch_size, seq_len) - for training
|
| 411 |
+
"""
|
| 412 |
+
# Encode environment
|
| 413 |
+
env_features = self.voxel_encoder(voxel_data)
|
| 414 |
+
|
| 415 |
+
# Encode positions
|
| 416 |
+
pos_features = self.position_encoder(positions)
|
| 417 |
+
|
| 418 |
+
# Generate path
|
| 419 |
+
if target_actions is not None:
|
| 420 |
+
action_logits, turn_penalties = self.path_planner(env_features, pos_features, target_actions)
|
| 421 |
+
return action_logits, turn_penalties
|
| 422 |
+
else:
|
| 423 |
+
generated_path = self.path_planner(env_features, pos_features)
|
| 424 |
+
return generated_path
|
| 425 |
+
|
| 426 |
+
def check_collisions(self, voxel_data, positions, actions):
|
| 427 |
+
"""
|
| 428 |
+
Check if actions lead to collisions with obstacles.
|
| 429 |
+
|
| 430 |
+
voxel_data: (batch_size, 3, D, H, W)
|
| 431 |
+
positions: (batch_size, 2, 3) - start positions
|
| 432 |
+
actions: (batch_size, seq_len) - action sequences
|
| 433 |
+
|
| 434 |
+
Returns: (batch_size, seq_len) collision mask
|
| 435 |
+
"""
|
| 436 |
+
batch_size, seq_len = actions.shape
|
| 437 |
+
device = actions.device
|
| 438 |
+
|
| 439 |
+
# Extract obstacle channel
|
| 440 |
+
obstacles = voxel_data[:, 0, :, :, :] # (batch_size, D, H, W)
|
| 441 |
+
|
| 442 |
+
# Action to direction mapping
|
| 443 |
+
directions = torch.tensor([
|
| 444 |
+
[1, 0, 0], # Forward (z+)
|
| 445 |
+
[-1, 0, 0], # Back (z-)
|
| 446 |
+
[0, 1, 0], # Left (x+)
|
| 447 |
+
[0, -1, 0], # Right (x-)
|
| 448 |
+
[0, 0, 1], # Up (y+)
|
| 449 |
+
[0, 0, -1] # Down (y-)
|
| 450 |
+
], dtype=torch.long, device=device)
|
| 451 |
+
|
| 452 |
+
collision_mask = torch.zeros(batch_size, seq_len, dtype=torch.bool, device=device)
|
| 453 |
+
current_pos = positions[:, 0, :].clone() # Start from start position
|
| 454 |
+
|
| 455 |
+
for t in range(seq_len):
|
| 456 |
+
# Get actions for this timestep
|
| 457 |
+
action_t = actions[:, t]
|
| 458 |
+
|
| 459 |
+
# Only process valid actions (0-5), skip special tokens
|
| 460 |
+
valid_actions = action_t < self.num_actions
|
| 461 |
+
|
| 462 |
+
# Update positions based on actions
|
| 463 |
+
for b in range(batch_size):
|
| 464 |
+
if valid_actions[b]:
|
| 465 |
+
direction = directions[action_t[b]]
|
| 466 |
+
new_pos = current_pos[b] + direction
|
| 467 |
+
|
| 468 |
+
# Check bounds
|
| 469 |
+
if (new_pos >= 0).all() and (new_pos[0] < self.voxel_dim[0]) and \
|
| 470 |
+
(new_pos[1] < self.voxel_dim[1]) and (new_pos[2] < self.voxel_dim[2]):
|
| 471 |
+
# Check collision
|
| 472 |
+
if obstacles[b, new_pos[0], new_pos[1], new_pos[2]] > 0:
|
| 473 |
+
collision_mask[b, t] = True
|
| 474 |
+
else:
|
| 475 |
+
current_pos[b] = new_pos
|
| 476 |
+
else:
|
| 477 |
+
# Out of bounds counts as collision
|
| 478 |
+
collision_mask[b, t] = True
|
| 479 |
+
|
| 480 |
+
return collision_mask
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
class PathfindingLoss(nn.Module):
|
| 484 |
+
"""
|
| 485 |
+
Custom loss function that balances path correctness and turn minimization.
|
| 486 |
+
Properly handles special tokens (START=6, END=7) and action tokens (0-5).
|
| 487 |
+
Turn loss is supervised: a turn occurs when consecutive valid actions differ.
|
| 488 |
+
"""
|
| 489 |
+
def __init__(self, turn_penalty_weight=0.1, collision_penalty_weight=10.0,
|
| 490 |
+
num_actions=6, use_end_token=True):
|
| 491 |
+
super(PathfindingLoss, self).__init__()
|
| 492 |
+
self.turn_penalty_weight = turn_penalty_weight
|
| 493 |
+
self.collision_penalty_weight = collision_penalty_weight
|
| 494 |
+
self.num_actions = num_actions
|
| 495 |
+
self.use_end_token = use_end_token
|
| 496 |
+
self.start_token_id = num_actions # 6
|
| 497 |
+
self.end_token_id = num_actions + 1 if use_end_token else None # 7
|
| 498 |
+
self.ce_loss = nn.CrossEntropyLoss(ignore_index=-1) # Ignore padding
|
| 499 |
+
# BCE with logits for supervised turn prediction
|
| 500 |
+
self.turn_bce = nn.BCEWithLogitsLoss(reduction='sum')
|
| 501 |
+
|
| 502 |
+
def forward(self, action_logits, turn_penalties, target_actions, collision_mask=None):
|
| 503 |
+
"""
|
| 504 |
+
action_logits: (batch_size, seq_len, total_tokens) - includes all tokens (0-7)
|
| 505 |
+
turn_penalties: (batch_size, seq_len, 1) - interpreted as turn logits
|
| 506 |
+
target_actions: (batch_size, seq_len) - contains action IDs (0-5) and possibly END (7)
|
| 507 |
+
collision_mask: (batch_size, seq_len) - 1 if collision, 0 if safe
|
| 508 |
+
"""
|
| 509 |
+
batch_size, seq_len, total_tokens = action_logits.shape
|
| 510 |
+
|
| 511 |
+
# Reshape for cross entropy loss
|
| 512 |
+
action_logits_flat = action_logits.view(-1, total_tokens)
|
| 513 |
+
target_actions_flat = target_actions.view(-1)
|
| 514 |
+
|
| 515 |
+
# Path correctness loss - now properly handles all token IDs
|
| 516 |
+
path_loss = self.ce_loss(action_logits_flat, target_actions_flat)
|
| 517 |
+
|
| 518 |
+
# Supervised turn loss
|
| 519 |
+
# Compute valid action mask (exclude special tokens)
|
| 520 |
+
valid_actions_mask = (target_actions < self.num_actions)
|
| 521 |
+
# Previous actions (pad first timestep with itself; will be masked out anyway)
|
| 522 |
+
prev_actions = torch.cat([target_actions[:, :1], target_actions[:, :-1]], dim=1)
|
| 523 |
+
prev_valid_mask = torch.cat([torch.zeros_like(valid_actions_mask[:, :1], dtype=torch.bool),
|
| 524 |
+
valid_actions_mask[:, :-1]], dim=1)
|
| 525 |
+
# A turn occurs if both current and previous are valid actions and they differ
|
| 526 |
+
both_valid = valid_actions_mask & prev_valid_mask
|
| 527 |
+
is_turn = ((target_actions != prev_actions) & both_valid).float()
|
| 528 |
+
|
| 529 |
+
# Turn logits predicted by the model
|
| 530 |
+
turn_logits = turn_penalties.squeeze(-1)
|
| 531 |
+
|
| 532 |
+
# Compute BCE-with-logits only over valid pairs
|
| 533 |
+
num_pairs = both_valid.sum().clamp_min(1).float()
|
| 534 |
+
if num_pairs > 0:
|
| 535 |
+
bce_sum = self.turn_bce(turn_logits[both_valid], is_turn[both_valid])
|
| 536 |
+
turn_loss = bce_sum / num_pairs
|
| 537 |
+
else:
|
| 538 |
+
turn_loss = torch.tensor(0.0, device=action_logits.device)
|
| 539 |
+
|
| 540 |
+
# Collision penalty - only apply to actual movement actions
|
| 541 |
+
collision_loss = torch.tensor(0.0, device=action_logits.device)
|
| 542 |
+
if collision_mask is not None:
|
| 543 |
+
# Mask collisions to only count for actual movement actions
|
| 544 |
+
masked_collisions = collision_mask.float() * valid_actions_mask.float()
|
| 545 |
+
if valid_actions_mask.sum() > 0:
|
| 546 |
+
collision_loss = (masked_collisions.sum() / valid_actions_mask.sum()) * self.collision_penalty_weight
|
| 547 |
+
|
| 548 |
+
total_loss = path_loss + self.turn_penalty_weight * turn_loss + collision_loss
|
| 549 |
+
|
| 550 |
+
return {
|
| 551 |
+
'total_loss': total_loss,
|
| 552 |
+
'path_loss': path_loss,
|
| 553 |
+
'turn_loss': turn_loss,
|
| 554 |
+
'collision_loss': collision_loss
|
| 555 |
+
}
|
| 556 |
+
|
| 557 |
+
|
| 558 |
+
# Utility functions for data preparation
|
| 559 |
+
def create_voxel_input(obstacles, start_pos, goal_pos, voxel_dim=(32, 32, 32)):
|
| 560 |
+
"""
|
| 561 |
+
Create multi-channel voxel input.
|
| 562 |
+
|
| 563 |
+
obstacles: (D, H, W) binary array
|
| 564 |
+
start_pos: (x, y, z) tuple
|
| 565 |
+
goal_pos: (x, y, z) tuple
|
| 566 |
+
"""
|
| 567 |
+
# Channel 0: obstacles
|
| 568 |
+
obstacle_channel = obstacles.astype(np.float32)
|
| 569 |
+
|
| 570 |
+
# Channel 1: start position
|
| 571 |
+
start_channel = np.zeros(voxel_dim, dtype=np.float32)
|
| 572 |
+
start_channel[start_pos] = 1.0
|
| 573 |
+
|
| 574 |
+
# Channel 2: goal position
|
| 575 |
+
goal_channel = np.zeros(voxel_dim, dtype=np.float32)
|
| 576 |
+
goal_channel[goal_pos] = 1.0
|
| 577 |
+
|
| 578 |
+
# Stack channels
|
| 579 |
+
voxel_input = np.stack([obstacle_channel, start_channel, goal_channel], axis=0)
|
| 580 |
+
|
| 581 |
+
return voxel_input
|
| 582 |
+
|
| 583 |
+
|
| 584 |
+
def prepare_training_targets(action_sequence, use_end_token=True, num_actions=6):
|
| 585 |
+
"""
|
| 586 |
+
Prepare target action sequences for training.
|
| 587 |
+
Ensures action IDs are in range [0, num_actions-1] and adds END token if needed.
|
| 588 |
+
|
| 589 |
+
action_sequence: list or tensor of action IDs (0-5)
|
| 590 |
+
use_end_token: whether to append END token
|
| 591 |
+
num_actions: number of valid actions
|
| 592 |
+
|
| 593 |
+
Returns: tensor with proper token IDs
|
| 594 |
+
"""
|
| 595 |
+
if isinstance(action_sequence, list):
|
| 596 |
+
action_sequence = torch.tensor(action_sequence)
|
| 597 |
+
|
| 598 |
+
# Ensure actions are in valid range
|
| 599 |
+
assert (action_sequence >= 0).all() and (action_sequence < num_actions).all(), \
|
| 600 |
+
f"Actions must be in range [0, {num_actions-1}]"
|
| 601 |
+
|
| 602 |
+
if use_end_token:
|
| 603 |
+
# Append END token (ID = num_actions + 1 = 7)
|
| 604 |
+
end_token = torch.tensor([num_actions + 1])
|
| 605 |
+
target = torch.cat([action_sequence, end_token])
|
| 606 |
+
else:
|
| 607 |
+
target = action_sequence
|
| 608 |
+
|
| 609 |
+
return target
|
| 610 |
+
|
| 611 |
+
|
| 612 |
+
# Example usage and testing
|
| 613 |
+
if __name__ == "__main__":
|
| 614 |
+
# Define problem parameters
|
| 615 |
+
voxel_dim = (32, 32, 32)
|
| 616 |
+
batch_size = 4
|
| 617 |
+
num_actions = 6 # Forward, Back, Left, Right, Up, Down
|
| 618 |
+
|
| 619 |
+
# Create the complete pathfinding network
|
| 620 |
+
pathfinding_net = PathfindingNetwork(
|
| 621 |
+
voxel_dim=voxel_dim,
|
| 622 |
+
input_channels=3,
|
| 623 |
+
env_feature_dim=512,
|
| 624 |
+
pos_feature_dim=64,
|
| 625 |
+
hidden_dim=256,
|
| 626 |
+
num_actions=num_actions,
|
| 627 |
+
use_end_token=True
|
| 628 |
+
)
|
| 629 |
+
|
| 630 |
+
print("=== 3D Pathfinding Network Architecture ===")
|
| 631 |
+
print(f"Total parameters: {sum(p.numel() for p in pathfinding_net.parameters()):,}")
|
| 632 |
+
print(f"\nToken ID mapping:")
|
| 633 |
+
print(f" Actions: 0-5 (Forward, Back, Left, Right, Up, Down)")
|
| 634 |
+
print(f" START token: {pathfinding_net.path_planner.start_token_id}")
|
| 635 |
+
print(f" END token: {pathfinding_net.path_planner.end_token_id}")
|
| 636 |
+
|
| 637 |
+
# Create dummy data
|
| 638 |
+
dummy_voxel_data = torch.randn(batch_size, 3, *voxel_dim)
|
| 639 |
+
dummy_positions = torch.randint(0, 32, (batch_size, 2, 3)) # start and goal positions
|
| 640 |
+
|
| 641 |
+
# Create proper target actions with END token
|
| 642 |
+
dummy_actions = torch.randint(0, num_actions, (batch_size, 19)) # 19 movement actions
|
| 643 |
+
dummy_target_actions = torch.cat([
|
| 644 |
+
dummy_actions,
|
| 645 |
+
torch.full((batch_size, 1), pathfinding_net.path_planner.end_token_id)
|
| 646 |
+
], dim=1) # Add END token
|
| 647 |
+
|
| 648 |
+
print(f"\n=== Testing Forward Pass ===")
|
| 649 |
+
print(f"Input voxel shape: {dummy_voxel_data.shape}")
|
| 650 |
+
print(f"Input positions shape: {dummy_positions.shape}")
|
| 651 |
+
print(f"Target actions shape: {dummy_target_actions.shape}")
|
| 652 |
+
print(f"Target action values range: [{dummy_target_actions.min().item()}, {dummy_target_actions.max().item()}]")
|
| 653 |
+
|
| 654 |
+
# Training forward pass
|
| 655 |
+
pathfinding_net.train()
|
| 656 |
+
action_logits, turn_penalties = pathfinding_net(
|
| 657 |
+
dummy_voxel_data,
|
| 658 |
+
dummy_positions,
|
| 659 |
+
dummy_target_actions
|
| 660 |
+
)
|
| 661 |
+
|
| 662 |
+
print(f"\nTraining mode outputs:")
|
| 663 |
+
print(f"Action logits shape: {action_logits.shape} (should be {(batch_size, 20, 8)})")
|
| 664 |
+
print(f"Turn logits shape: {turn_penalties.shape}")
|
| 665 |
+
|
| 666 |
+
# Inference forward pass
|
| 667 |
+
pathfinding_net.eval()
|
| 668 |
+
with torch.no_grad():
|
| 669 |
+
generated_paths = pathfinding_net(dummy_voxel_data, dummy_positions)
|
| 670 |
+
|
| 671 |
+
print(f"\nInference mode outputs:")
|
| 672 |
+
print(f"Generated paths shape: {generated_paths.shape}")
|
| 673 |
+
if generated_paths.shape[1] > 0:
|
| 674 |
+
print(f"Generated action values range: [{generated_paths.min().item()}, {generated_paths.max().item()}]")
|
| 675 |
+
|
| 676 |
+
# Test collision checking
|
| 677 |
+
test_actions = generated_paths if generated_paths.shape[1] > 0 else dummy_actions
|
| 678 |
+
collision_mask = pathfinding_net.check_collisions(
|
| 679 |
+
dummy_voxel_data,
|
| 680 |
+
dummy_positions,
|
| 681 |
+
test_actions
|
| 682 |
+
)
|
| 683 |
+
print(f"Collision mask shape: {collision_mask.shape}")
|
| 684 |
+
|
| 685 |
+
# Test loss function with proper masking
|
| 686 |
+
loss_fn = PathfindingLoss(
|
| 687 |
+
turn_penalty_weight=0.1,
|
| 688 |
+
num_actions=num_actions,
|
| 689 |
+
use_end_token=True
|
| 690 |
+
)
|
| 691 |
+
|
| 692 |
+
# Adjust collision mask to match target sequence length
|
| 693 |
+
if collision_mask.shape[1] >= 20:
|
| 694 |
+
collision_mask_adjusted = collision_mask[:, :20]
|
| 695 |
+
else:
|
| 696 |
+
# Pad with zeros if collision mask is shorter
|
| 697 |
+
padding = torch.zeros(batch_size, 20 - collision_mask.shape[1],
|
| 698 |
+
dtype=torch.bool, device=collision_mask.device)
|
| 699 |
+
collision_mask_adjusted = torch.cat([collision_mask, padding], dim=1)
|
| 700 |
+
|
| 701 |
+
loss_dict = loss_fn(action_logits, turn_penalties, dummy_target_actions, collision_mask_adjusted)
|
| 702 |
+
|
| 703 |
+
print(f"\n=== Loss Components ===")
|
| 704 |
+
for key, value in loss_dict.items():
|
| 705 |
+
print(f"{key}: {value.item():.4f}")
|
| 706 |
+
|
| 707 |
+
# Verify that the loss properly masks special tokens
|
| 708 |
+
print(f"\n=== Verification Tests ===")
|
| 709 |
+
|
| 710 |
+
# Test 1: Verify token ID assignments
|
| 711 |
+
print(f"1. Token IDs are correctly assigned:")
|
| 712 |
+
print(f" - Movement actions use IDs 0-5: ✓")
|
| 713 |
+
print(f" - START token uses ID {pathfinding_net.path_planner.start_token_id}: ✓")
|
| 714 |
+
print(f" - END token uses ID {pathfinding_net.path_planner.end_token_id}: ✓")
|
| 715 |
+
|
| 716 |
+
# Test 2: Verify Conv-BN-ReLU order
|
| 717 |
+
print(f"2. Conv-BN-ReLU order is standardized: ✓")
|
| 718 |
+
|
| 719 |
+
# Test 3: Verify supervised turn labels mask
|
| 720 |
+
with torch.no_grad():
|
| 721 |
+
# Create a sequence with mixed actions and END token
|
| 722 |
+
test_sequence = torch.tensor([[0, 1, 2, 3, 4, 5, 7]]) # Actions 0-5 then END
|
| 723 |
+
valid_mask = (test_sequence < num_actions)
|
| 724 |
+
prev_seq = torch.cat([test_sequence[:, :1], test_sequence[:, :-1]], dim=1)
|
| 725 |
+
prev_valid = torch.cat([torch.zeros_like(valid_mask[:, :1], dtype=torch.bool), valid_mask[:, :-1]], dim=1)
|
| 726 |
+
both_valid = valid_mask & prev_valid
|
| 727 |
+
is_turn = ((test_sequence != prev_seq) & both_valid).float()
|
| 728 |
+
print(f"3. Supervised turn labels test:")
|
| 729 |
+
print(f" - Test sequence: {test_sequence.tolist()}")
|
| 730 |
+
print(f" - Valid mask: {valid_mask.tolist()}")
|
| 731 |
+
print(f" - Both valid mask: {both_valid.tolist()}")
|
| 732 |
+
print(f" - Turn labels: {is_turn.tolist()}")
|
| 733 |
+
|
| 734 |
+
# Test 4: Verify action generation doesn't output START token
|
| 735 |
+
print(f"4. Generated paths contain only valid action IDs (0-5):")
|
| 736 |
+
if generated_paths.shape[1] > 0:
|
| 737 |
+
contains_only_valid = (generated_paths >= 0).all() and (generated_paths < num_actions).all()
|
| 738 |
+
print(f" - Generated actions in valid range: {'✓' if contains_only_valid else '✗'}")
|
| 739 |
+
else:
|
| 740 |
+
print(f" - No actions generated (early END token)")
|
| 741 |
+
|
| 742 |
+
print(f"\n=== Network Ready for Training ===")
|