udpated readme
Browse files
README.md
CHANGED
|
@@ -37,11 +37,44 @@ The model can be used directly (without a language model) as follows:
|
|
| 37 |
```python
|
| 38 |
import torch
|
| 39 |
import torchaudio
|
| 40 |
-
from datasets import load_dataset
|
| 41 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-javanese")
|
| 47 |
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-javanese")
|
|
@@ -51,15 +84,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
| 51 |
# Preprocessing the datasets.
|
| 52 |
# We need to read the aduio files as arrays
|
| 53 |
def speech_file_to_array_fn(batch):
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
|
| 58 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 59 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 60 |
|
| 61 |
with torch.no_grad():
|
| 62 |
-
|
| 63 |
|
| 64 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 65 |
|
|
@@ -75,11 +108,45 @@ The model can be evaluated as follows on the Indonesian test data of Common Voic
|
|
| 75 |
```python
|
| 76 |
import torch
|
| 77 |
import torchaudio
|
| 78 |
-
from datasets import load_dataset, load_metric
|
| 79 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 80 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
## TODO: load from OpenSLR https://openslr.org/41/
|
| 83 |
wer = load_metric("wer")
|
| 84 |
|
| 85 |
processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-javanese")
|
|
@@ -93,24 +160,24 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
| 93 |
# Preprocessing the datasets.
|
| 94 |
# We need to read the aduio files as arrays
|
| 95 |
def speech_file_to_array_fn(batch):
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
|
| 101 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 102 |
|
| 103 |
# Preprocessing the datasets.
|
| 104 |
# We need to read the aduio files as arrays
|
| 105 |
def evaluate(batch):
|
| 106 |
-
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
|
| 111 |
pred_ids = torch.argmax(logits, dim=-1)
|
| 112 |
-
|
| 113 |
-
|
| 114 |
|
| 115 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
| 116 |
|
|
@@ -124,4 +191,3 @@ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"],
|
|
| 124 |
The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO
|
| 125 |
|
| 126 |
The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition)
|
| 127 |
-
(will be available soon)
|
|
|
|
| 37 |
```python
|
| 38 |
import torch
|
| 39 |
import torchaudio
|
| 40 |
+
from datasets import load_dataset, load_metric, Dataset
|
| 41 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 42 |
+
from datasets.utils.download_manager import DownloadManager
|
| 43 |
+
from pathlib import Path
|
| 44 |
+
import pandas as pd
|
| 45 |
+
|
| 46 |
+
def load_dataset_javanese():
|
| 47 |
+
urls = [
|
| 48 |
+
"https://www.openslr.org/resources/41/jv_id_female.zip",
|
| 49 |
+
"https://www.openslr.org/resources/41/jv_id_male.zip"
|
| 50 |
+
]
|
| 51 |
+
dm = DownloadManager()
|
| 52 |
+
download_dirs = dm.download_and_extract(urls)
|
| 53 |
+
data_dirs = [
|
| 54 |
+
Path(download_dirs[0])/"jv_id_female/wavs",
|
| 55 |
+
Path(download_dirs[1])/"jv_id_male/wavs",
|
| 56 |
+
]
|
| 57 |
+
filenames = [
|
| 58 |
+
Path(download_dirs[0])/"jv_id_female/line_index.tsv",
|
| 59 |
+
Path(download_dirs[1])/"jv_id_male/line_index.tsv",
|
| 60 |
+
]
|
| 61 |
+
|
| 62 |
+
dfs = []
|
| 63 |
+
dfs.append(pd.read_csv(filenames[0], sep='\t', names=["path", "sentence"]))
|
| 64 |
+
dfs.append(pd.read_csv(filenames[1], sep='\t', names=["path", "client_id", "sentence"]))
|
| 65 |
+
dfs[1] = dfs[1].drop(["client_id"], axis=1)
|
| 66 |
+
|
| 67 |
+
for i, dir in enumerate(data_dirs):
|
| 68 |
+
dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1)
|
| 69 |
+
df = pd.concat(dfs)
|
| 70 |
+
# df = df.sample(frac=1, random_state=1).reset_index(drop=True)
|
| 71 |
+
dataset = Dataset.from_pandas(df)
|
| 72 |
+
dataset = dataset.remove_columns('__index_level_0__')
|
| 73 |
+
|
| 74 |
+
return dataset.train_test_split(test_size=0.1, seed=1)
|
| 75 |
+
|
| 76 |
+
dataset = load_dataset_javanese()
|
| 77 |
+
test_dataset = dataset['test']
|
| 78 |
|
| 79 |
processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-javanese")
|
| 80 |
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-javanese")
|
|
|
|
| 84 |
# Preprocessing the datasets.
|
| 85 |
# We need to read the aduio files as arrays
|
| 86 |
def speech_file_to_array_fn(batch):
|
| 87 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
| 88 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
| 89 |
+
return batch
|
| 90 |
|
| 91 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 92 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 93 |
|
| 94 |
with torch.no_grad():
|
| 95 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
| 96 |
|
| 97 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 98 |
|
|
|
|
| 108 |
```python
|
| 109 |
import torch
|
| 110 |
import torchaudio
|
| 111 |
+
from datasets import load_dataset, load_metric, Dataset
|
| 112 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 113 |
import re
|
| 114 |
+
from pathlib import Path
|
| 115 |
+
import pandas as pd
|
| 116 |
+
|
| 117 |
+
def load_dataset_javanese():
|
| 118 |
+
urls = [
|
| 119 |
+
"https://www.openslr.org/resources/41/jv_id_female.zip",
|
| 120 |
+
"https://www.openslr.org/resources/41/jv_id_male.zip"
|
| 121 |
+
]
|
| 122 |
+
dm = DownloadManager()
|
| 123 |
+
download_dirs = dm.download_and_extract(urls)
|
| 124 |
+
data_dirs = [
|
| 125 |
+
Path(download_dirs[0])/"jv_id_female/wavs",
|
| 126 |
+
Path(download_dirs[1])/"jv_id_male/wavs",
|
| 127 |
+
]
|
| 128 |
+
filenames = [
|
| 129 |
+
Path(download_dirs[0])/"jv_id_female/line_index.tsv",
|
| 130 |
+
Path(download_dirs[1])/"jv_id_male/line_index.tsv",
|
| 131 |
+
]
|
| 132 |
+
|
| 133 |
+
dfs = []
|
| 134 |
+
dfs.append(pd.read_csv(filenames[0], sep='\t', names=["path", "sentence"]))
|
| 135 |
+
dfs.append(pd.read_csv(filenames[1], sep='\t', names=["path", "client_id", "sentence"]))
|
| 136 |
+
dfs[1] = dfs[1].drop(["client_id"], axis=1)
|
| 137 |
+
|
| 138 |
+
for i, dir in enumerate(data_dirs):
|
| 139 |
+
dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1)
|
| 140 |
+
df = pd.concat(dfs)
|
| 141 |
+
# df = df.sample(frac=1, random_state=1).reset_index(drop=True)
|
| 142 |
+
dataset = Dataset.from_pandas(df)
|
| 143 |
+
dataset = dataset.remove_columns('__index_level_0__')
|
| 144 |
+
|
| 145 |
+
return dataset.train_test_split(test_size=0.1, seed=1)
|
| 146 |
+
|
| 147 |
+
dataset = load_dataset_javanese()
|
| 148 |
+
test_dataset = dataset['test']
|
| 149 |
|
|
|
|
| 150 |
wer = load_metric("wer")
|
| 151 |
|
| 152 |
processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-javanese")
|
|
|
|
| 160 |
# Preprocessing the datasets.
|
| 161 |
# We need to read the aduio files as arrays
|
| 162 |
def speech_file_to_array_fn(batch):
|
| 163 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
| 164 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
| 165 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
| 166 |
+
return batch
|
| 167 |
|
| 168 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 169 |
|
| 170 |
# Preprocessing the datasets.
|
| 171 |
# We need to read the aduio files as arrays
|
| 172 |
def evaluate(batch):
|
| 173 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 174 |
|
| 175 |
+
with torch.no_grad():
|
| 176 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
| 177 |
|
| 178 |
pred_ids = torch.argmax(logits, dim=-1)
|
| 179 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
| 180 |
+
return batch
|
| 181 |
|
| 182 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
| 183 |
|
|
|
|
| 191 |
The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO
|
| 192 |
|
| 193 |
The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition)
|
|
|