--- pipeline_tag: text-generation license: other license_name: modified-mit license_link: https://github.com/MiniMax-AI/MiniMax-M2.5/blob/main/LICENSE library_name: mlx base_model: MiniMaxAI/MiniMax-M2.5 tags: - mlx --- # catalystsec/MiniMax-M2.5-4bit-DWQ This model was quantized to 4-bit using DWQ with mlx-lm version **0.30.7**. | Parameter | Value | |---------------------------|--------------------------------| | DWQ learning rate | 3e-7 | | Batch size | 1 | | Dataset | `allenai/tulu-3-sft-mixture` | | Initial validation loss | 0.077 | | Final validation loss | 0.053 | | Relative KL reduction | ≈31 % | | Tokens processed | ≈1.11 M | ## Perplexity Evaluated on 210 samples of 512 tokens from the default mlx-lm calibration data. | Model | Perplexity | |-------|-----------| | 3-bit | 7.802 | | 3-bit DWQ | 7.434 | | 4-bit | 6.581 | | 4-bit DWQ | **6.431** | ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("catalystsec/MiniMax-M2.5-4bit-DWQ") prompt = "hello" if tokenizer.chat_template is not None: prompt = tokenizer.apply_chat_template( [{"role": "user", "content": prompt}], add_generation_prompt=True, ) response = generate(model, tokenizer, prompt=prompt, verbose=True) print(response) ```