Update modeling_minicpm.py
Browse files- modeling_minicpm.py +172 -111
modeling_minicpm.py
CHANGED
|
@@ -36,7 +36,8 @@ from transformers.modeling_attn_mask_utils import (
|
|
| 36 |
_prepare_4d_causal_attention_mask,
|
| 37 |
_prepare_4d_causal_attention_mask_for_sdpa,
|
| 38 |
)
|
| 39 |
-
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast,
|
|
|
|
| 40 |
from transformers.modeling_utils import PreTrainedModel
|
| 41 |
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
|
| 42 |
from transformers.utils import (
|
|
@@ -57,7 +58,6 @@ try:
|
|
| 57 |
except:
|
| 58 |
pass
|
| 59 |
|
| 60 |
-
|
| 61 |
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
| 62 |
# It means that the function will not be traced through and simply appear as a node in the graph.
|
| 63 |
if is_torch_fx_available():
|
|
@@ -66,7 +66,6 @@ if is_torch_fx_available():
|
|
| 66 |
|
| 67 |
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
| 68 |
|
| 69 |
-
|
| 70 |
logger = logging.get_logger(__name__)
|
| 71 |
|
| 72 |
_CONFIG_FOR_DOC = "MiniCPMConfig"
|
|
@@ -92,7 +91,7 @@ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int]
|
|
| 92 |
|
| 93 |
|
| 94 |
def _make_causal_mask(
|
| 95 |
-
|
| 96 |
):
|
| 97 |
warnings.warn(
|
| 98 |
"Calling `transformers.models.minicpm.modeling_minicpm._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.minicpm.modeling_minicpm.AttentionMaskConverter._make_causal_mask"
|
|
@@ -101,6 +100,7 @@ def _make_causal_mask(
|
|
| 101 |
input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
|
| 102 |
)
|
| 103 |
|
|
|
|
| 104 |
# @torch.jit.script # type: ignore
|
| 105 |
def rms_layernorm(hidden: torch.Tensor, weight: torch.Tensor, eps: float):
|
| 106 |
old_dtype = hidden.dtype
|
|
@@ -193,7 +193,7 @@ class MiniCPMDynamicNTKScalingRotaryEmbedding(MiniCPMRotaryEmbedding):
|
|
| 193 |
|
| 194 |
if seq_len > self.max_position_embeddings:
|
| 195 |
base = self.base * (
|
| 196 |
-
|
| 197 |
) ** (self.dim / (self.dim - 2))
|
| 198 |
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 199 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
@@ -211,7 +211,7 @@ class MiniCPMDynamicNTKScalingRotaryEmbedding(MiniCPMRotaryEmbedding):
|
|
| 211 |
def rotate_half(x):
|
| 212 |
"""Rotates half the hidden dims of the input."""
|
| 213 |
x1 = x[..., : x.shape[-1] // 2]
|
| 214 |
-
x2 = x[..., x.shape[-1] // 2
|
| 215 |
return torch.cat((-x2, x1), dim=-1)
|
| 216 |
|
| 217 |
|
|
@@ -249,6 +249,7 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
|
| 249 |
k_embed = (k_fp32 * cos) + (rotate_half(k_fp32) * sin)
|
| 250 |
return q_embed.to(dtype=orig_dtype), k_embed.to(dtype=orig_dtype)
|
| 251 |
|
|
|
|
| 252 |
class MiniCPMMLP(nn.Module):
|
| 253 |
def __init__(self, config):
|
| 254 |
super().__init__()
|
|
@@ -295,7 +296,6 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
| 295 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 296 |
|
| 297 |
|
| 298 |
-
|
| 299 |
class MiniCPMAttention(nn.Module):
|
| 300 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 301 |
|
|
@@ -363,14 +363,14 @@ class MiniCPMAttention(nn.Module):
|
|
| 363 |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 364 |
|
| 365 |
def forward(
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 375 |
if "padding_mask" in kwargs:
|
| 376 |
warnings.warn(
|
|
@@ -463,7 +463,7 @@ class MiniCPMAttention(nn.Module):
|
|
| 463 |
|
| 464 |
if not output_attentions:
|
| 465 |
attn_weights = None
|
| 466 |
-
|
| 467 |
return attn_output, attn_weights, past_key_value
|
| 468 |
|
| 469 |
|
|
@@ -483,14 +483,14 @@ class MiniCPMFlashAttention2(MiniCPMAttention):
|
|
| 483 |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 484 |
|
| 485 |
def forward(
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 495 |
# MiniCPMFlashAttention2 attention does not support output_attentions
|
| 496 |
if "padding_mask" in kwargs:
|
|
@@ -571,7 +571,7 @@ class MiniCPMFlashAttention2(MiniCPMAttention):
|
|
| 571 |
return attn_output, attn_weights, past_key_value
|
| 572 |
|
| 573 |
def _flash_attention_forward(
|
| 574 |
-
|
| 575 |
):
|
| 576 |
"""
|
| 577 |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
|
@@ -675,13 +675,13 @@ class MiniCPMSdpaAttention(MiniCPMAttention):
|
|
| 675 |
|
| 676 |
# Adapted from MiniCPMAttention.forward
|
| 677 |
def forward(
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 686 |
if output_attentions:
|
| 687 |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
|
@@ -774,14 +774,14 @@ class MiniCPMDecoderLayer(nn.Module):
|
|
| 774 |
self.num_hidden_layers = config.num_hidden_layers
|
| 775 |
|
| 776 |
def forward(
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 786 |
"""
|
| 787 |
Args:
|
|
@@ -814,7 +814,7 @@ class MiniCPMDecoderLayer(nn.Module):
|
|
| 814 |
use_cache=use_cache,
|
| 815 |
**kwargs,
|
| 816 |
)
|
| 817 |
-
|
| 818 |
hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
|
| 819 |
|
| 820 |
# Fully Connected
|
|
@@ -952,7 +952,7 @@ MINICPM_INPUTS_DOCSTRING = r"""
|
|
| 952 |
"The bare MiniCPM Model outputting raw hidden-states without any specific head on top.",
|
| 953 |
MINICPM_START_DOCSTRING,
|
| 954 |
)
|
| 955 |
-
class
|
| 956 |
"""
|
| 957 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniCPMDecoderLayer`]
|
| 958 |
|
|
@@ -986,17 +986,17 @@ class MiniCPMModel(MiniCPMPreTrainedModel):
|
|
| 986 |
|
| 987 |
@add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
|
| 988 |
def forward(
|
| 989 |
-
|
| 990 |
-
|
| 991 |
-
|
| 992 |
-
|
| 993 |
-
|
| 994 |
-
|
| 995 |
-
|
| 996 |
-
|
| 997 |
-
|
| 998 |
-
|
| 999 |
-
|
| 1000 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 1001 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1002 |
output_hidden_states = (
|
|
@@ -1066,11 +1066,21 @@ class MiniCPMModel(MiniCPMPreTrainedModel):
|
|
| 1066 |
all_self_attns = () if output_attentions else None
|
| 1067 |
next_decoder_cache = None
|
| 1068 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1069 |
for idx, decoder_layer in enumerate(self.layers):
|
| 1070 |
-
if
|
|
|
|
|
|
|
|
|
|
| 1071 |
break
|
| 1072 |
-
if output_hidden_states:
|
| 1073 |
-
all_hidden_states += (hidden_states,)
|
| 1074 |
|
| 1075 |
if self.gradient_checkpointing and self.training:
|
| 1076 |
layer_outputs = self._gradient_checkpointing_func(
|
|
@@ -1103,7 +1113,7 @@ class MiniCPMModel(MiniCPMPreTrainedModel):
|
|
| 1103 |
hidden_states = self.norm(hidden_states)
|
| 1104 |
|
| 1105 |
# add hidden states from the last decoder layer
|
| 1106 |
-
if output_hidden_states:
|
| 1107 |
all_hidden_states += (hidden_states,)
|
| 1108 |
|
| 1109 |
next_cache = None
|
|
@@ -1119,14 +1129,21 @@ class MiniCPMModel(MiniCPMPreTrainedModel):
|
|
| 1119 |
)
|
| 1120 |
|
| 1121 |
|
| 1122 |
-
class
|
| 1123 |
_tied_weights_keys = ["lm_head.weight"]
|
| 1124 |
|
| 1125 |
def __init__(self, config):
|
| 1126 |
super().__init__(config)
|
| 1127 |
-
self.model =
|
| 1128 |
self.vocab_size = config.vocab_size
|
| 1129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1130 |
|
| 1131 |
# Initialize weights and apply final processing
|
| 1132 |
self.post_init()
|
|
@@ -1152,18 +1169,19 @@ class MiniCPMForCausalLM(MiniCPMPreTrainedModel):
|
|
| 1152 |
@add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
|
| 1153 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1154 |
def forward(
|
| 1155 |
-
|
| 1156 |
-
|
| 1157 |
-
|
| 1158 |
-
|
| 1159 |
-
|
| 1160 |
-
|
| 1161 |
-
|
| 1162 |
-
|
| 1163 |
-
|
| 1164 |
-
|
| 1165 |
-
|
| 1166 |
-
|
|
|
|
| 1167 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1168 |
r"""
|
| 1169 |
Args:
|
|
@@ -1196,6 +1214,19 @@ class MiniCPMForCausalLM(MiniCPMPreTrainedModel):
|
|
| 1196 |
)
|
| 1197 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1199 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1200 |
outputs = self.model(
|
| 1201 |
input_ids=input_ids,
|
|
@@ -1205,32 +1236,62 @@ class MiniCPMForCausalLM(MiniCPMPreTrainedModel):
|
|
| 1205 |
inputs_embeds=inputs_embeds,
|
| 1206 |
use_cache=use_cache,
|
| 1207 |
output_attentions=output_attentions,
|
| 1208 |
-
output_hidden_states=
|
| 1209 |
return_dict=return_dict,
|
| 1210 |
-
|
| 1211 |
)
|
| 1212 |
|
| 1213 |
hidden_states = outputs[0]
|
| 1214 |
-
|
| 1215 |
-
|
| 1216 |
-
|
| 1217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1218 |
else:
|
| 1219 |
-
|
| 1220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1221 |
|
| 1222 |
loss = None
|
| 1223 |
-
if labels is not None:
|
| 1224 |
# Shift so that tokens < n predict n
|
| 1225 |
-
|
| 1226 |
-
|
| 1227 |
-
|
| 1228 |
-
|
| 1229 |
-
|
| 1230 |
-
|
| 1231 |
-
|
| 1232 |
-
|
| 1233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1234 |
|
| 1235 |
if not return_dict:
|
| 1236 |
output = (logits,) + outputs[1:]
|
|
@@ -1245,7 +1306,7 @@ class MiniCPMForCausalLM(MiniCPMPreTrainedModel):
|
|
| 1245 |
)
|
| 1246 |
|
| 1247 |
def prepare_inputs_for_generation(
|
| 1248 |
-
|
| 1249 |
):
|
| 1250 |
if past_key_values is not None:
|
| 1251 |
if isinstance(past_key_values, Cache):
|
|
@@ -1261,7 +1322,7 @@ class MiniCPMForCausalLM(MiniCPMPreTrainedModel):
|
|
| 1261 |
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
| 1262 |
# input)
|
| 1263 |
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
| 1264 |
-
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length)
|
| 1265 |
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
| 1266 |
# input_ids based on the past_length.
|
| 1267 |
elif past_length < input_ids.shape[1]:
|
|
@@ -1270,9 +1331,9 @@ class MiniCPMForCausalLM(MiniCPMPreTrainedModel):
|
|
| 1270 |
|
| 1271 |
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
| 1272 |
if (
|
| 1273 |
-
|
| 1274 |
-
|
| 1275 |
-
|
| 1276 |
):
|
| 1277 |
attention_mask = attention_mask[:, -max_cache_length:]
|
| 1278 |
|
|
@@ -1282,7 +1343,7 @@ class MiniCPMForCausalLM(MiniCPMPreTrainedModel):
|
|
| 1282 |
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1283 |
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1284 |
if past_key_values:
|
| 1285 |
-
position_ids = position_ids[:, -input_ids.shape[1]
|
| 1286 |
|
| 1287 |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1288 |
if inputs_embeds is not None and past_key_values is None:
|
|
@@ -1308,7 +1369,7 @@ class MiniCPMForCausalLM(MiniCPMPreTrainedModel):
|
|
| 1308 |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
| 1309 |
)
|
| 1310 |
return reordered_past
|
| 1311 |
-
|
| 1312 |
@torch.inference_mode()
|
| 1313 |
def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
|
| 1314 |
max_length: int = 4096, num_beams=1, do_sample=True, top_p=0.8, temperature=0.3, logits_processor=None,
|
|
@@ -1317,11 +1378,11 @@ class MiniCPMForCausalLM(MiniCPMPreTrainedModel):
|
|
| 1317 |
history = []
|
| 1318 |
if logits_processor:
|
| 1319 |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
| 1320 |
-
|
| 1321 |
else:
|
| 1322 |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
| 1323 |
-
|
| 1324 |
-
|
| 1325 |
history.append({"role": role, "content": query})
|
| 1326 |
history_str = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=False)
|
| 1327 |
inputs = tokenizer(history_str, return_tensors='pt').to(self.device)
|
|
@@ -1369,17 +1430,17 @@ class MiniCPMForSequenceClassification(MiniCPMPreTrainedModel):
|
|
| 1369 |
|
| 1370 |
@add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
|
| 1371 |
def forward(
|
| 1372 |
-
|
| 1373 |
-
|
| 1374 |
-
|
| 1375 |
-
|
| 1376 |
-
|
| 1377 |
-
|
| 1378 |
-
|
| 1379 |
-
|
| 1380 |
-
|
| 1381 |
-
|
| 1382 |
-
|
| 1383 |
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1384 |
r"""
|
| 1385 |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
|
|
| 36 |
_prepare_4d_causal_attention_mask,
|
| 37 |
_prepare_4d_causal_attention_mask_for_sdpa,
|
| 38 |
)
|
| 39 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, \
|
| 40 |
+
SequenceClassifierOutputWithPast
|
| 41 |
from transformers.modeling_utils import PreTrainedModel
|
| 42 |
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
|
| 43 |
from transformers.utils import (
|
|
|
|
| 58 |
except:
|
| 59 |
pass
|
| 60 |
|
|
|
|
| 61 |
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
| 62 |
# It means that the function will not be traced through and simply appear as a node in the graph.
|
| 63 |
if is_torch_fx_available():
|
|
|
|
| 66 |
|
| 67 |
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
| 68 |
|
|
|
|
| 69 |
logger = logging.get_logger(__name__)
|
| 70 |
|
| 71 |
_CONFIG_FOR_DOC = "MiniCPMConfig"
|
|
|
|
| 91 |
|
| 92 |
|
| 93 |
def _make_causal_mask(
|
| 94 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
| 95 |
):
|
| 96 |
warnings.warn(
|
| 97 |
"Calling `transformers.models.minicpm.modeling_minicpm._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.minicpm.modeling_minicpm.AttentionMaskConverter._make_causal_mask"
|
|
|
|
| 100 |
input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
|
| 101 |
)
|
| 102 |
|
| 103 |
+
|
| 104 |
# @torch.jit.script # type: ignore
|
| 105 |
def rms_layernorm(hidden: torch.Tensor, weight: torch.Tensor, eps: float):
|
| 106 |
old_dtype = hidden.dtype
|
|
|
|
| 193 |
|
| 194 |
if seq_len > self.max_position_embeddings:
|
| 195 |
base = self.base * (
|
| 196 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
| 197 |
) ** (self.dim / (self.dim - 2))
|
| 198 |
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 199 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
|
|
| 211 |
def rotate_half(x):
|
| 212 |
"""Rotates half the hidden dims of the input."""
|
| 213 |
x1 = x[..., : x.shape[-1] // 2]
|
| 214 |
+
x2 = x[..., x.shape[-1] // 2:]
|
| 215 |
return torch.cat((-x2, x1), dim=-1)
|
| 216 |
|
| 217 |
|
|
|
|
| 249 |
k_embed = (k_fp32 * cos) + (rotate_half(k_fp32) * sin)
|
| 250 |
return q_embed.to(dtype=orig_dtype), k_embed.to(dtype=orig_dtype)
|
| 251 |
|
| 252 |
+
|
| 253 |
class MiniCPMMLP(nn.Module):
|
| 254 |
def __init__(self, config):
|
| 255 |
super().__init__()
|
|
|
|
| 296 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 297 |
|
| 298 |
|
|
|
|
| 299 |
class MiniCPMAttention(nn.Module):
|
| 300 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 301 |
|
|
|
|
| 363 |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 364 |
|
| 365 |
def forward(
|
| 366 |
+
self,
|
| 367 |
+
hidden_states: torch.Tensor,
|
| 368 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 369 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 370 |
+
past_key_value: Optional[Cache] = None,
|
| 371 |
+
output_attentions: bool = False,
|
| 372 |
+
use_cache: bool = False,
|
| 373 |
+
**kwargs,
|
| 374 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 375 |
if "padding_mask" in kwargs:
|
| 376 |
warnings.warn(
|
|
|
|
| 463 |
|
| 464 |
if not output_attentions:
|
| 465 |
attn_weights = None
|
| 466 |
+
|
| 467 |
return attn_output, attn_weights, past_key_value
|
| 468 |
|
| 469 |
|
|
|
|
| 483 |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 484 |
|
| 485 |
def forward(
|
| 486 |
+
self,
|
| 487 |
+
hidden_states: torch.Tensor,
|
| 488 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 489 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 490 |
+
past_key_value: Optional[Cache] = None,
|
| 491 |
+
output_attentions: bool = False,
|
| 492 |
+
use_cache: bool = False,
|
| 493 |
+
**kwargs,
|
| 494 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 495 |
# MiniCPMFlashAttention2 attention does not support output_attentions
|
| 496 |
if "padding_mask" in kwargs:
|
|
|
|
| 571 |
return attn_output, attn_weights, past_key_value
|
| 572 |
|
| 573 |
def _flash_attention_forward(
|
| 574 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
| 575 |
):
|
| 576 |
"""
|
| 577 |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
|
|
|
| 675 |
|
| 676 |
# Adapted from MiniCPMAttention.forward
|
| 677 |
def forward(
|
| 678 |
+
self,
|
| 679 |
+
hidden_states: torch.Tensor,
|
| 680 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 681 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 682 |
+
past_key_value: Optional[Cache] = None,
|
| 683 |
+
output_attentions: bool = False,
|
| 684 |
+
use_cache: bool = False,
|
| 685 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 686 |
if output_attentions:
|
| 687 |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
|
|
|
| 774 |
self.num_hidden_layers = config.num_hidden_layers
|
| 775 |
|
| 776 |
def forward(
|
| 777 |
+
self,
|
| 778 |
+
hidden_states: torch.Tensor,
|
| 779 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 780 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 781 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 782 |
+
output_attentions: Optional[bool] = False,
|
| 783 |
+
use_cache: Optional[bool] = False,
|
| 784 |
+
**kwargs,
|
| 785 |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 786 |
"""
|
| 787 |
Args:
|
|
|
|
| 814 |
use_cache=use_cache,
|
| 815 |
**kwargs,
|
| 816 |
)
|
| 817 |
+
|
| 818 |
hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
|
| 819 |
|
| 820 |
# Fully Connected
|
|
|
|
| 952 |
"The bare MiniCPM Model outputting raw hidden-states without any specific head on top.",
|
| 953 |
MINICPM_START_DOCSTRING,
|
| 954 |
)
|
| 955 |
+
class LayerWiseMiniCPMModel(MiniCPMPreTrainedModel):
|
| 956 |
"""
|
| 957 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniCPMDecoderLayer`]
|
| 958 |
|
|
|
|
| 986 |
|
| 987 |
@add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
|
| 988 |
def forward(
|
| 989 |
+
self,
|
| 990 |
+
input_ids: torch.LongTensor = None,
|
| 991 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 992 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 993 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 994 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 995 |
+
use_cache: Optional[bool] = None,
|
| 996 |
+
output_attentions: Optional[bool] = None,
|
| 997 |
+
output_hidden_states: Optional[bool] = None,
|
| 998 |
+
return_dict: Optional[bool] = None,
|
| 999 |
+
cutoff_layers: Optional[Union[int, List]] = None,
|
| 1000 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 1001 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1002 |
output_hidden_states = (
|
|
|
|
| 1066 |
all_self_attns = () if output_attentions else None
|
| 1067 |
next_decoder_cache = None
|
| 1068 |
|
| 1069 |
+
if cutoff_layers is None:
|
| 1070 |
+
max_layer = self.config.num_hidden_layers
|
| 1071 |
+
cutoff_layers = [max_layer]
|
| 1072 |
+
if isinstance(cutoff_layers, int):
|
| 1073 |
+
max_layer = cutoff_layers
|
| 1074 |
+
cutoff_layers = [cutoff_layers]
|
| 1075 |
+
else:
|
| 1076 |
+
max_layer = max(cutoff_layers)
|
| 1077 |
+
|
| 1078 |
for idx, decoder_layer in enumerate(self.layers):
|
| 1079 |
+
if idx in cutoff_layers and output_hidden_states:
|
| 1080 |
+
all_hidden_states += (self.norm(hidden_states),)
|
| 1081 |
+
|
| 1082 |
+
if idx == max_layer:
|
| 1083 |
break
|
|
|
|
|
|
|
| 1084 |
|
| 1085 |
if self.gradient_checkpointing and self.training:
|
| 1086 |
layer_outputs = self._gradient_checkpointing_func(
|
|
|
|
| 1113 |
hidden_states = self.norm(hidden_states)
|
| 1114 |
|
| 1115 |
# add hidden states from the last decoder layer
|
| 1116 |
+
if output_hidden_states and self.config.num_hidden_layers == max_layer:
|
| 1117 |
all_hidden_states += (hidden_states,)
|
| 1118 |
|
| 1119 |
next_cache = None
|
|
|
|
| 1129 |
)
|
| 1130 |
|
| 1131 |
|
| 1132 |
+
class LayerWiseMiniCPMForCausalLM(MiniCPMPreTrainedModel):
|
| 1133 |
_tied_weights_keys = ["lm_head.weight"]
|
| 1134 |
|
| 1135 |
def __init__(self, config):
|
| 1136 |
super().__init__(config)
|
| 1137 |
+
self.model = LayerWiseMiniCPMModel(config)
|
| 1138 |
self.vocab_size = config.vocab_size
|
| 1139 |
+
|
| 1140 |
+
if not self.config.classifier_multi:
|
| 1141 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1142 |
+
else:
|
| 1143 |
+
self.lm_head = nn.ModuleList([nn.Linear(
|
| 1144 |
+
config.hidden_size, config.vocab_size, bias=False) for _ in range(
|
| 1145 |
+
self.config.start_layer,
|
| 1146 |
+
self.model.config.num_hidden_layers)])
|
| 1147 |
|
| 1148 |
# Initialize weights and apply final processing
|
| 1149 |
self.post_init()
|
|
|
|
| 1169 |
@add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
|
| 1170 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1171 |
def forward(
|
| 1172 |
+
self,
|
| 1173 |
+
input_ids: torch.LongTensor = None,
|
| 1174 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1175 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1176 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1177 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1178 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1179 |
+
use_cache: Optional[bool] = None,
|
| 1180 |
+
output_attentions: Optional[bool] = None,
|
| 1181 |
+
output_hidden_states: Optional[bool] = None,
|
| 1182 |
+
return_dict: Optional[bool] = None,
|
| 1183 |
+
cutoff_layers: Optional[Union[int, List]] = None,
|
| 1184 |
+
only_for_one_logit: Optional[int] = None
|
| 1185 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1186 |
r"""
|
| 1187 |
Args:
|
|
|
|
| 1214 |
)
|
| 1215 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1216 |
|
| 1217 |
+
if cutoff_layers is None:
|
| 1218 |
+
cutoff_layers = [self.config.num_hidden_layers]
|
| 1219 |
+
elif isinstance(cutoff_layers, int):
|
| 1220 |
+
cutoff_layers = [cutoff_layers]
|
| 1221 |
+
|
| 1222 |
+
remove_layers = [i for i in cutoff_layers if self.config.start_layer > i or i > self.config.num_hidden_layers]
|
| 1223 |
+
if len(remove_layers) > 0:
|
| 1224 |
+
logger.warning_once(
|
| 1225 |
+
f"layers {remove_layers} is incompatible with the setting. They will be removed..."
|
| 1226 |
+
)
|
| 1227 |
+
|
| 1228 |
+
cutoff_layers = [i for i in cutoff_layers if i not in remove_layers]
|
| 1229 |
+
|
| 1230 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1231 |
outputs = self.model(
|
| 1232 |
input_ids=input_ids,
|
|
|
|
| 1236 |
inputs_embeds=inputs_embeds,
|
| 1237 |
use_cache=use_cache,
|
| 1238 |
output_attentions=output_attentions,
|
| 1239 |
+
output_hidden_states=True,
|
| 1240 |
return_dict=return_dict,
|
| 1241 |
+
cutoff_layers=cutoff_layers
|
| 1242 |
)
|
| 1243 |
|
| 1244 |
hidden_states = outputs[0]
|
| 1245 |
+
|
| 1246 |
+
all_logits = ()
|
| 1247 |
+
if only_for_one_logit is None:
|
| 1248 |
+
for i in range(len(outputs.hidden_states)):
|
| 1249 |
+
if self.config.classifier_multi == False:
|
| 1250 |
+
if self.config.pretraining_tp > 1:
|
| 1251 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
| 1252 |
+
logits = [F.linear(outputs.hidden_states[i], lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
| 1253 |
+
logits = torch.cat(logits, dim=-1)
|
| 1254 |
+
else:
|
| 1255 |
+
logits = self.lm_head(outputs.hidden_states[i] / (self.config.hidden_size / self.config.dim_model_base))
|
| 1256 |
+
else:
|
| 1257 |
+
if self.config.pretraining_tp > 1:
|
| 1258 |
+
lm_head_slices = self.lm_head[cutoff_layers[i] - self.config.start_layer].weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
| 1259 |
+
logits = [F.linear(outputs.hidden_states[i], lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
| 1260 |
+
logits = torch.cat(logits, dim=-1)
|
| 1261 |
+
else:
|
| 1262 |
+
logits = self.lm_head[cutoff_layers[i] - self.config.start_layer](outputs.hidden_states[i] / (self.config.hidden_size / self.config.dim_model_base))
|
| 1263 |
+
logits = logits.float()
|
| 1264 |
+
all_logits = all_logits + (logits, )
|
| 1265 |
else:
|
| 1266 |
+
if self.config.classifier_multi == False:
|
| 1267 |
+
lm_head_slices = self.lm_head.weight.split(1, dim=0)
|
| 1268 |
+
for i in range(len(outputs.hidden_states)):
|
| 1269 |
+
logits = F.linear(outputs.hidden_states[i], lm_head_slices[only_for_one_logit])
|
| 1270 |
+
logits = logits.float()
|
| 1271 |
+
all_logits = all_logits + (logits,)
|
| 1272 |
+
else:
|
| 1273 |
+
for i in range(len(outputs.hidden_states)):
|
| 1274 |
+
lm_head_slices = self.lm_head[cutoff_layers[i] - self.config.start_layer].weight.split(1, dim=0)
|
| 1275 |
+
logits = F.linear(outputs.hidden_states[i], lm_head_slices[only_for_one_logit])
|
| 1276 |
+
logits = logits.float()
|
| 1277 |
+
all_logits = all_logits + (logits, )
|
| 1278 |
|
| 1279 |
loss = None
|
| 1280 |
+
if labels is not None and not only_for_one_logit:
|
| 1281 |
# Shift so that tokens < n predict n
|
| 1282 |
+
loss = 0
|
| 1283 |
+
for logits in all_logits:
|
| 1284 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1285 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1286 |
+
# Flatten the tokens
|
| 1287 |
+
loss_fct = CrossEntropyLoss()
|
| 1288 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 1289 |
+
shift_labels = shift_labels.view(-1)
|
| 1290 |
+
# Enable model parallelism
|
| 1291 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 1292 |
+
loss += loss_fct(shift_logits, shift_labels)
|
| 1293 |
+
|
| 1294 |
+
outputs.hidden_states = None if not output_hidden_states else outputs.hidden_states
|
| 1295 |
|
| 1296 |
if not return_dict:
|
| 1297 |
output = (logits,) + outputs[1:]
|
|
|
|
| 1306 |
)
|
| 1307 |
|
| 1308 |
def prepare_inputs_for_generation(
|
| 1309 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 1310 |
):
|
| 1311 |
if past_key_values is not None:
|
| 1312 |
if isinstance(past_key_values, Cache):
|
|
|
|
| 1322 |
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
| 1323 |
# input)
|
| 1324 |
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
| 1325 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
|
| 1326 |
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
| 1327 |
# input_ids based on the past_length.
|
| 1328 |
elif past_length < input_ids.shape[1]:
|
|
|
|
| 1331 |
|
| 1332 |
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
| 1333 |
if (
|
| 1334 |
+
max_cache_length is not None
|
| 1335 |
+
and attention_mask is not None
|
| 1336 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
| 1337 |
):
|
| 1338 |
attention_mask = attention_mask[:, -max_cache_length:]
|
| 1339 |
|
|
|
|
| 1343 |
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1344 |
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1345 |
if past_key_values:
|
| 1346 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
| 1347 |
|
| 1348 |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1349 |
if inputs_embeds is not None and past_key_values is None:
|
|
|
|
| 1369 |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
| 1370 |
)
|
| 1371 |
return reordered_past
|
| 1372 |
+
|
| 1373 |
@torch.inference_mode()
|
| 1374 |
def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
|
| 1375 |
max_length: int = 4096, num_beams=1, do_sample=True, top_p=0.8, temperature=0.3, logits_processor=None,
|
|
|
|
| 1378 |
history = []
|
| 1379 |
if logits_processor:
|
| 1380 |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
| 1381 |
+
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
| 1382 |
else:
|
| 1383 |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
| 1384 |
+
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
| 1385 |
+
|
| 1386 |
history.append({"role": role, "content": query})
|
| 1387 |
history_str = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=False)
|
| 1388 |
inputs = tokenizer(history_str, return_tensors='pt').to(self.device)
|
|
|
|
| 1430 |
|
| 1431 |
@add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
|
| 1432 |
def forward(
|
| 1433 |
+
self,
|
| 1434 |
+
input_ids: torch.LongTensor = None,
|
| 1435 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1436 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1437 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1438 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1439 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1440 |
+
use_cache: Optional[bool] = None,
|
| 1441 |
+
output_attentions: Optional[bool] = None,
|
| 1442 |
+
output_hidden_states: Optional[bool] = None,
|
| 1443 |
+
return_dict: Optional[bool] = None,
|
| 1444 |
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1445 |
r"""
|
| 1446 |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|