Yair - Added error handling for XGB model
Browse files- model_manager.py +5 -3
model_manager.py
CHANGED
|
@@ -6,7 +6,9 @@ from config import CATBOOST_MODEL_PATH, XGB_MODEL_PATH, RF_MODEL_PATH
|
|
| 6 |
def save_models(models):
|
| 7 |
""" Save trained models """
|
| 8 |
models["CatBoost"].save_model(CATBOOST_MODEL_PATH)
|
| 9 |
-
models["XGBoost"]
|
|
|
|
|
|
|
| 10 |
joblib.dump(models["RandomForest"], RF_MODEL_PATH)
|
| 11 |
print("✅ Models saved successfully!")
|
| 12 |
|
|
@@ -15,9 +17,9 @@ def load_models():
|
|
| 15 |
catboost = CatBoostClassifier()
|
| 16 |
catboost.load_model(CATBOOST_MODEL_PATH)
|
| 17 |
|
| 18 |
-
xgb = XGBClassifier()
|
| 19 |
xgb.load_model(XGB_MODEL_PATH)
|
| 20 |
|
| 21 |
rf = joblib.load(RF_MODEL_PATH)
|
| 22 |
|
| 23 |
-
return {"CatBoost": catboost, "XGBoost": xgb, "RandomForest": rf}
|
|
|
|
| 6 |
def save_models(models):
|
| 7 |
""" Save trained models """
|
| 8 |
models["CatBoost"].save_model(CATBOOST_MODEL_PATH)
|
| 9 |
+
if models["XGBoost"] is not None:
|
| 10 |
+
# Save XGBoost model in binary format to reduce memory usage
|
| 11 |
+
models["XGBoost"].get_booster().save_model(XGB_MODEL_PATH)
|
| 12 |
joblib.dump(models["RandomForest"], RF_MODEL_PATH)
|
| 13 |
print("✅ Models saved successfully!")
|
| 14 |
|
|
|
|
| 17 |
catboost = CatBoostClassifier()
|
| 18 |
catboost.load_model(CATBOOST_MODEL_PATH)
|
| 19 |
|
| 20 |
+
xgb = XGBClassifier() # Load XGBoost model in binary format
|
| 21 |
xgb.load_model(XGB_MODEL_PATH)
|
| 22 |
|
| 23 |
rf = joblib.load(RF_MODEL_PATH)
|
| 24 |
|
| 25 |
+
return {"CatBoost": catboost, "XGBoost": xgb, "RandomForest": rf}
|