che111 commited on
Commit
248a640
·
verified ·
1 Parent(s): 3bbb93d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -3
README.md CHANGED
@@ -1,3 +1,41 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+ # 🧠 AlphaMed
6
+
7
+ This is the official model checkpoint for the paper:
8
+ **[AlphaMed: Incentivizing Medical Reasoning with minimalist Rule-Based RL](https://www.arxiv.org/abs/2505.17952)**
9
+ AlphaMed is a medical large language model trained **without supervised fine-tuning on chain-of-thought (CoT) data**,
10
+ relying solely on reinforcement learning to elicit step-by-step reasoning in complex medical tasks.
11
+
12
+ ## 🚀 Usage
13
+
14
+ To use the model, format your input prompt as:
15
+
16
+ > **Question:** [your medical question here]
17
+ > **Please reason step by step, and put the final answer in \boxed{}**
18
+
19
+ ### 🔬 Example
20
+
21
+ ```python
22
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
23
+
24
+ # Load model and tokenizer
25
+ model_id = "che111/AlphaMed-3B-instruct-rl" # Replace with actual repo path
26
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
27
+ model = AutoModelForCausalLM.from_pretrained(model_id)
28
+
29
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
30
+
31
+ # Format question
32
+ prompt = (
33
+ "Question: A 45-year-old patient presents with chest pain radiating to the left arm and elevated troponin levels. "
34
+ "What is the most likely diagnosis?\n"
35
+ "Please reason step by step, and put the final answer in \\boxed{}"
36
+ )
37
+
38
+ # Generate output
39
+ max_new_tokens=8196
40
+ output = pipe(prompt, max_new_tokens=max_new_tokens, do_sample=False)[0]["generated_text"]
41
+ print(output)