--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert_toxic results: [] --- # distilbert_toxic This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5048 - Accuracy: 0.8612 - Precision: 0.8469 - Recall: 0.8195 - F1: 0.8330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 3407 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2971 | 1.0 | 4767 | 0.3258 | 0.8675 | 0.8643 | 0.8140 | 0.8384 | | 0.2798 | 2.0 | 9534 | 0.3120 | 0.8708 | 0.8452 | 0.8498 | 0.8475 | | 0.1481 | 3.0 | 14301 | 0.3898 | 0.8681 | 0.8466 | 0.8399 | 0.8432 | | 0.1161 | 4.0 | 19068 | 0.5048 | 0.8612 | 0.8469 | 0.8195 | 0.8330 | ### Framework versions - Transformers 4.56.1 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.0