File size: 13,792 Bytes
0b58803 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
function [warped] = ft_warp_apply(M, input, method, tol)
% FT_WARP_APPLY performs a 3D linear or nonlinear transformation on the input
% coordinates, similar to those in AIR 3.08. You can find technical
% documentation on warping in general at http://bishopw.loni.ucla.edu/AIR3
%
% Use as
% [warped] = ft_warp_apply(M, input, method, tol)
% where
% M vector or matrix with warping parameters
% input Nx3 matrix with coordinates
% warped Nx3 matrix with coordinates
% method string describing the warping method
% tol (optional) value determining the numerical precision of the
% output, to deal with numerical round off imprecisions due to
% the warping
%
% The methods 'nonlin0', 'nonlin2' ... 'nonlin5' specify a
% polynomial transformation. The size of the transformation matrix
% depends on the order of the warp
% zeroth order : 1 parameter per coordinate (translation)
% first order : 4 parameters per coordinate (total 12, affine)
% second order : 10 parameters per coordinate
% third order : 20 parameters per coordinate
% fourth order : 35 parameters per coordinate
% fifth order : 56 parameters per coordinate (total 168)
% The size of M should be 3xP, where P is the number of parameters
% per coordinate. Alternatively, you can specify the method to be
% 'nonlinear', where the order will be determined from the size of
% the matrix M.
%
% If the method 'homogeneous' is selected, the input matrix M should be
% a 4x4 homogenous transformation matrix.
%
% If the method 'sn2individual' or 'individual2sn' is selected, the input
% M should be a structure based on nonlinear (warping) normalisation parameters
% created by SPM8 for alignment between an individual structural MRI and the
% template MNI brain. These options call private functions of the same name.
% M will have subfields like this:
% Affine: [4x4 double]
% Tr: [4-D double]
% VF: [1x1 struct]
% VG: [1x1 struct]
% flags: [1x1 struct]
%
% If any other method is selected, it is assumed that it specifies the name of an
% auxiliary function that will, when given the input parameter vector M, return an
% 4x4 homogenous transformation matrix. Supplied functions are 'translate', 'rotate',
% 'scale', 'rigidbody', 'globalrescale', 'traditional', 'affine', 'perspective',
% 'quaternion'.
%
% See also FT_WARP_OPTIM, FT_WARP_ERROR
% Copyright (C) 2000-2016, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
if nargin<4
tol = [];
end
if nargin<3 && all(size(M)==4)
% no specific transformation mode has been selected
% it looks like a homogenous transformation matrix
method = 'homogeneous';
elseif nargin<3
% the default method is 'nonlinear'
method = 'nonlinear';
end
if size(input,2)==2
% convert the input points from 2D to 3D representation
input(:,3) = 0;
input3d = false;
else
input3d = true;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% nonlinear warping
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if any(strcmp(method, {'nonlinear', 'nonlin0', 'nonlin1', 'nonlin2', 'nonlin3', 'nonlin4', 'nonlin5'}))
x = input(:,1);
y = input(:,2);
z = input(:,3);
s = size(M);
if s(1)~=3
error('invalid size of nonlinear transformation matrix');
elseif strcmp(method, 'nonlin0') && s(2)~=1
error('invalid size of nonlinear transformation matrix');
elseif strcmp(method, 'nonlin1') && s(2)~=4
error('invalid size of nonlinear transformation matrix');
elseif strcmp(method, 'nonlin2') && s(2)~=10
error('invalid size of nonlinear transformation matrix');
elseif strcmp(method, 'nonlin3') && s(2)~=20
error('invalid size of nonlinear transformation matrix');
elseif strcmp(method, 'nonlin4') && s(2)~=35
error('invalid size of nonlinear transformation matrix');
elseif strcmp(method, 'nonlin5') && s(2)~=56
error('invalid size of nonlinear transformation matrix');
end
if s(2)==1
% this is a translation, which in a strict sense is not the 0th order nonlinear transformation
xx = M(1,1) + x;
yy = M(2,1) + y;
zz = M(3,1) + z;
elseif s(2)==4
xx = M(1,1) + M(1,2)*x + M(1,3)*y + M(1,4)*z;
yy = M(2,1) + M(2,2)*x + M(2,3)*y + M(2,4)*z;
zz = M(3,1) + M(3,2)*x + M(3,3)*y + M(3,4)*z;
elseif s(2)==10
xx = M(1,1) + M(1,2)*x + M(1,3)*y + M(1,4)*z + M(1,5)*x.*x + M(1,6)*x.*y + M(1,7)*x.*z + M(1,8)*y.*y + M(1,9)*y.*z + M(1,10)*z.*z;
yy = M(2,1) + M(2,2)*x + M(2,3)*y + M(2,4)*z + M(2,5)*x.*x + M(2,6)*x.*y + M(2,7)*x.*z + M(2,8)*y.*y + M(2,9)*y.*z + M(2,10)*z.*z;
zz = M(3,1) + M(3,2)*x + M(3,3)*y + M(3,4)*z + M(3,5)*x.*x + M(3,6)*x.*y + M(3,7)*x.*z + M(3,8)*y.*y + M(3,9)*y.*z + M(3,10)*z.*z;
elseif s(2)==20
xx = M(1,1) + M(1,2)*x + M(1,3)*y + M(1,4)*z + M(1,5)*x.*x + M(1,6)*x.*y + M(1,7)*x.*z + M(1,8)*y.*y + M(1,9)*y.*z + M(1,10)*z.*z + M(1,11)*x.*x.*x + M(1,12)*x.*x.*y + M(1,13)*x.*x.*z + M(1,14)*x.*y.*y + M(1,15)*x.*y.*z + M(1,16)*x.*z.*z + M(1,17)*y.*y.*y + M(1,18)*y.*y.*z + M(1,19)*y.*z.*z + M(1,20)*z.*z.*z;
yy = M(2,1) + M(2,2)*x + M(2,3)*y + M(2,4)*z + M(2,5)*x.*x + M(2,6)*x.*y + M(2,7)*x.*z + M(2,8)*y.*y + M(2,9)*y.*z + M(2,10)*z.*z + M(2,11)*x.*x.*x + M(2,12)*x.*x.*y + M(2,13)*x.*x.*z + M(2,14)*x.*y.*y + M(2,15)*x.*y.*z + M(2,16)*x.*z.*z + M(2,17)*y.*y.*y + M(2,18)*y.*y.*z + M(2,19)*y.*z.*z + M(2,20)*z.*z.*z;
zz = M(3,1) + M(3,2)*x + M(3,3)*y + M(3,4)*z + M(3,5)*x.*x + M(3,6)*x.*y + M(3,7)*x.*z + M(3,8)*y.*y + M(3,9)*y.*z + M(3,10)*z.*z + M(3,11)*x.*x.*x + M(3,12)*x.*x.*y + M(3,13)*x.*x.*z + M(3,14)*x.*y.*y + M(3,15)*x.*y.*z + M(3,16)*x.*z.*z + M(3,17)*y.*y.*y + M(3,18)*y.*y.*z + M(3,19)*y.*z.*z + M(3,20)*z.*z.*z;
elseif s(2)==35
xx = M(1,1) + M(1,2)*x + M(1,3)*y + M(1,4)*z + M(1,5)*x.*x + M(1,6)*x.*y + M(1,7)*x.*z + M(1,8)*y.*y + M(1,9)*y.*z + M(1,10)*z.*z + M(1,11)*x.*x.*x + M(1,12)*x.*x.*y + M(1,13)*x.*x.*z + M(1,14)*x.*y.*y + M(1,15)*x.*y.*z + M(1,16)*x.*z.*z + M(1,17)*y.*y.*y + M(1,18)*y.*y.*z + M(1,19)*y.*z.*z + M(1,20)*z.*z.*z + M(1,21)*x.*x.*x.*x + M(1,22)*x.*x.*x.*y + M(1,23)*x.*x.*x.*z + M(1,24)*x.*x.*y.*y + M(1,25)*x.*x.*y.*z + M(1,26)*x.*x.*z.*z + M(1,27)*x.*y.*y.*y + M(1,28)*x.*y.*y.*z + M(1,29)*x.*y.*z.*z + M(1,30)*x.*z.*z.*z + M(1,31)*y.*y.*y.*y + M(1,32)*y.*y.*y.*z + M(1,33)*y.*y.*z.*z + M(1,34)*y.*z.*z.*z + M(1,35)*z.*z.*z.*z;
yy = M(2,1) + M(2,2)*x + M(2,3)*y + M(2,4)*z + M(2,5)*x.*x + M(2,6)*x.*y + M(2,7)*x.*z + M(2,8)*y.*y + M(2,9)*y.*z + M(2,10)*z.*z + M(2,11)*x.*x.*x + M(2,12)*x.*x.*y + M(2,13)*x.*x.*z + M(2,14)*x.*y.*y + M(2,15)*x.*y.*z + M(2,16)*x.*z.*z + M(2,17)*y.*y.*y + M(2,18)*y.*y.*z + M(2,19)*y.*z.*z + M(2,20)*z.*z.*z + M(2,21)*x.*x.*x.*x + M(2,22)*x.*x.*x.*y + M(2,23)*x.*x.*x.*z + M(2,24)*x.*x.*y.*y + M(2,25)*x.*x.*y.*z + M(2,26)*x.*x.*z.*z + M(2,27)*x.*y.*y.*y + M(2,28)*x.*y.*y.*z + M(2,29)*x.*y.*z.*z + M(2,30)*x.*z.*z.*z + M(2,31)*y.*y.*y.*y + M(2,32)*y.*y.*y.*z + M(2,33)*y.*y.*z.*z + M(2,34)*y.*z.*z.*z + M(2,35)*z.*z.*z.*z;
zz = M(3,1) + M(3,2)*x + M(3,3)*y + M(3,4)*z + M(3,5)*x.*x + M(3,6)*x.*y + M(3,7)*x.*z + M(3,8)*y.*y + M(3,9)*y.*z + M(3,10)*z.*z + M(3,11)*x.*x.*x + M(3,12)*x.*x.*y + M(3,13)*x.*x.*z + M(3,14)*x.*y.*y + M(3,15)*x.*y.*z + M(3,16)*x.*z.*z + M(3,17)*y.*y.*y + M(3,18)*y.*y.*z + M(3,19)*y.*z.*z + M(3,20)*z.*z.*z + M(3,21)*x.*x.*x.*x + M(3,22)*x.*x.*x.*y + M(3,23)*x.*x.*x.*z + M(3,24)*x.*x.*y.*y + M(3,25)*x.*x.*y.*z + M(3,26)*x.*x.*z.*z + M(3,27)*x.*y.*y.*y + M(3,28)*x.*y.*y.*z + M(3,29)*x.*y.*z.*z + M(3,30)*x.*z.*z.*z + M(3,31)*y.*y.*y.*y + M(3,32)*y.*y.*y.*z + M(3,33)*y.*y.*z.*z + M(3,34)*y.*z.*z.*z + M(3,35)*z.*z.*z.*z;
elseif s(2)==56
xx = M(1,1) + M(1,2)*x + M(1,3)*y + M(1,4)*z + M(1,5)*x.*x + M(1,6)*x.*y + M(1,7)*x.*z + M(1,8)*y.*y + M(1,9)*y.*z + M(1,10)*z.*z + M(1,11)*x.*x.*x + M(1,12)*x.*x.*y + M(1,13)*x.*x.*z + M(1,14)*x.*y.*y + M(1,15)*x.*y.*z + M(1,16)*x.*z.*z + M(1,17)*y.*y.*y + M(1,18)*y.*y.*z + M(1,19)*y.*z.*z + M(1,20)*z.*z.*z + M(1,21)*x.*x.*x.*x + M(1,22)*x.*x.*x.*y + M(1,23)*x.*x.*x.*z + M(1,24)*x.*x.*y.*y + M(1,25)*x.*x.*y.*z + M(1,26)*x.*x.*z.*z + M(1,27)*x.*y.*y.*y + M(1,28)*x.*y.*y.*z + M(1,29)*x.*y.*z.*z + M(1,30)*x.*z.*z.*z + M(1,31)*y.*y.*y.*y + M(1,32)*y.*y.*y.*z + M(1,33)*y.*y.*z.*z + M(1,34)*y.*z.*z.*z + M(1,35)*z.*z.*z.*z + M(1,36)*x.*x.*x.*x.*x + M(1,37)*x.*x.*x.*x.*y + M(1,38)*x.*x.*x.*x.*z + M(1,39)*x.*x.*x.*y.*y + M(1,40)*x.*x.*x.*y.*z + M(1,41)*x.*x.*x.*z.*z + M(1,42)*x.*x.*y.*y.*y + M(1,43)*x.*x.*y.*y.*z + M(1,44)*x.*x.*y.*z.*z + M(1,45)*x.*x.*z.*z.*z + M(1,46)*x.*y.*y.*y.*y + M(1,47)*x.*y.*y.*y.*z + M(1,48)*x.*y.*y.*z.*z + M(1,49)*x.*y.*z.*z.*z + M(1,50)*x.*z.*z.*z.*z + M(1,51)*y.*y.*y.*y.*y + M(1,52)*y.*y.*y.*y.*z + M(1,53)*y.*y.*y.*z.*z + M(1,54)*y.*y.*z.*z.*z + M(1,55)*y.*z.*z.*z.*z + M(1,56)*z.*z.*z.*z.*z;
yy = M(2,1) + M(2,2)*x + M(2,3)*y + M(2,4)*z + M(2,5)*x.*x + M(2,6)*x.*y + M(2,7)*x.*z + M(2,8)*y.*y + M(2,9)*y.*z + M(2,10)*z.*z + M(2,11)*x.*x.*x + M(2,12)*x.*x.*y + M(2,13)*x.*x.*z + M(2,14)*x.*y.*y + M(2,15)*x.*y.*z + M(2,16)*x.*z.*z + M(2,17)*y.*y.*y + M(2,18)*y.*y.*z + M(2,19)*y.*z.*z + M(2,20)*z.*z.*z + M(2,21)*x.*x.*x.*x + M(2,22)*x.*x.*x.*y + M(2,23)*x.*x.*x.*z + M(2,24)*x.*x.*y.*y + M(2,25)*x.*x.*y.*z + M(2,26)*x.*x.*z.*z + M(2,27)*x.*y.*y.*y + M(2,28)*x.*y.*y.*z + M(2,29)*x.*y.*z.*z + M(2,30)*x.*z.*z.*z + M(2,31)*y.*y.*y.*y + M(2,32)*y.*y.*y.*z + M(2,33)*y.*y.*z.*z + M(2,34)*y.*z.*z.*z + M(2,35)*z.*z.*z.*z + M(2,36)*x.*x.*x.*x.*x + M(2,37)*x.*x.*x.*x.*y + M(2,38)*x.*x.*x.*x.*z + M(2,39)*x.*x.*x.*y.*y + M(2,40)*x.*x.*x.*y.*z + M(2,41)*x.*x.*x.*z.*z + M(2,42)*x.*x.*y.*y.*y + M(2,43)*x.*x.*y.*y.*z + M(2,44)*x.*x.*y.*z.*z + M(2,45)*x.*x.*z.*z.*z + M(2,46)*x.*y.*y.*y.*y + M(2,47)*x.*y.*y.*y.*z + M(2,48)*x.*y.*y.*z.*z + M(2,49)*x.*y.*z.*z.*z + M(2,50)*x.*z.*z.*z.*z + M(2,51)*y.*y.*y.*y.*y + M(2,52)*y.*y.*y.*y.*z + M(2,53)*y.*y.*y.*z.*z + M(2,54)*y.*y.*z.*z.*z + M(2,55)*y.*z.*z.*z.*z + M(2,56)*z.*z.*z.*z.*z;
zz = M(3,1) + M(3,2)*x + M(3,3)*y + M(3,4)*z + M(3,5)*x.*x + M(3,6)*x.*y + M(3,7)*x.*z + M(3,8)*y.*y + M(3,9)*y.*z + M(3,10)*z.*z + M(3,11)*x.*x.*x + M(3,12)*x.*x.*y + M(3,13)*x.*x.*z + M(3,14)*x.*y.*y + M(3,15)*x.*y.*z + M(3,16)*x.*z.*z + M(3,17)*y.*y.*y + M(3,18)*y.*y.*z + M(3,19)*y.*z.*z + M(3,20)*z.*z.*z + M(3,21)*x.*x.*x.*x + M(3,22)*x.*x.*x.*y + M(3,23)*x.*x.*x.*z + M(3,24)*x.*x.*y.*y + M(3,25)*x.*x.*y.*z + M(3,26)*x.*x.*z.*z + M(3,27)*x.*y.*y.*y + M(3,28)*x.*y.*y.*z + M(3,29)*x.*y.*z.*z + M(3,30)*x.*z.*z.*z + M(3,31)*y.*y.*y.*y + M(3,32)*y.*y.*y.*z + M(3,33)*y.*y.*z.*z + M(3,34)*y.*z.*z.*z + M(3,35)*z.*z.*z.*z + M(3,36)*x.*x.*x.*x.*x + M(3,37)*x.*x.*x.*x.*y + M(3,38)*x.*x.*x.*x.*z + M(3,39)*x.*x.*x.*y.*y + M(3,40)*x.*x.*x.*y.*z + M(3,41)*x.*x.*x.*z.*z + M(3,42)*x.*x.*y.*y.*y + M(3,43)*x.*x.*y.*y.*z + M(3,44)*x.*x.*y.*z.*z + M(3,45)*x.*x.*z.*z.*z + M(3,46)*x.*y.*y.*y.*y + M(3,47)*x.*y.*y.*y.*z + M(3,48)*x.*y.*y.*z.*z + M(3,49)*x.*y.*z.*z.*z + M(3,50)*x.*z.*z.*z.*z + M(3,51)*y.*y.*y.*y.*y + M(3,52)*y.*y.*y.*y.*z + M(3,53)*y.*y.*y.*z.*z + M(3,54)*y.*y.*z.*z.*z + M(3,55)*y.*z.*z.*z.*z + M(3,56)*z.*z.*z.*z.*z;
else
error('invalid size of nonlinear transformation matrix');
end
warped = [xx yy zz];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% linear warping using homogenous coordinate transformation matrix
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif strcmp(method, 'homogenous') || strcmp(method, 'homogeneous')
if all(size(M)==3)
% convert the 3x3 homogenous transformation matrix (corresponding with 2D)
% into a 4x4 homogenous transformation matrix (corresponding with 3D)
M = [
M(1,1) M(1,2) 0 M(1,3)
M(2,1) M(2,2) 0 M(2,3)
0 0 0 0
M(3,1) M(3,2) 0 M(3,3)
];
end
%warped = M * [input'; ones(1, size(input, 1))];
%warped = warped(1:3,:)';
% below achieves the same as lines 154-155
warped = [input ones(size(input, 1),1)]*M(1:3,:)';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% using external function that returns a homogeneous transformation matrix
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif exist(method, 'file') && ~isa(M, 'struct')
% get the homogenous transformation matrix
H = feval(method, M);
warped = ft_warp_apply(H, input, 'homogeneous');
elseif strcmp(method, 'sn2individual') && isa(M, 'struct')
% use SPM structure with parameters for an inverse warp
% from normalized space to individual, can be non-linear
warped = sn2individual(M, input);
elseif strcmp(method, 'individual2sn') && isa(M, 'struct')
% use SPM structure with parameters for a warp from
% individual space to normalized space, can be non-linear
%error('individual2sn is not yet implemented');
warped = individual2sn(M, input);
else
error('unrecognized transformation method');
end
if ~input3d
% convert from 3D back to 2D representation
warped = warped(:,1:2);
end
if ~isempty(tol)
if tol>0
warped = fix(warped./tol)*tol;
end
end
|