File size: 8,484 Bytes
484e3bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
"""
Example 3: Intervention Simulation and Counterfactual Analysis
This example demonstrates:
- Policy intervention simulation
- Counterfactual reasoning ("what if" scenarios)
- Comparing multiple interventions
- Optimal intervention finding
"""
import numpy as np
import sys
sys.path.append('..')
from geobot.models.causal_graph import CausalGraph, StructuralCausalModel
from geobot.inference.do_calculus import DoCalculus, InterventionSimulator
def create_geopolitical_scm():
"""Create a structural causal model for geopolitical scenarios."""
print("\n1. Creating Structural Causal Model...")
# Create causal graph
graph = CausalGraph(name="geopolitical_system")
# Add nodes
graph.add_node('economic_sanctions', node_type='policy')
graph.add_node('diplomatic_pressure', node_type='policy')
graph.add_node('domestic_stability', node_type='state')
graph.add_node('military_mobilization', node_type='state')
graph.add_node('conflict_probability', node_type='outcome')
# Add causal edges
graph.add_edge('economic_sanctions', 'domestic_stability',
strength=-0.6, mechanism="Sanctions reduce stability")
graph.add_edge('diplomatic_pressure', 'domestic_stability',
strength=-0.3, mechanism="Pressure affects stability")
graph.add_edge('domestic_stability', 'military_mobilization',
strength=-0.7, mechanism="Instability drives mobilization")
graph.add_edge('military_mobilization', 'conflict_probability',
strength=0.8, mechanism="Mobilization increases conflict risk")
graph.add_edge('economic_sanctions', 'conflict_probability',
strength=0.4, mechanism="Direct deterrence effect")
print(f" Created graph with {len(graph.graph.nodes)} nodes and {len(graph.edges)} edges")
# Create SCM
scm = StructuralCausalModel(graph)
# Define structural equations
def sanctions_fn(parents, noise):
return 0.5 + noise # Baseline policy level
def pressure_fn(parents, noise):
return 0.3 + noise
def stability_fn(parents, noise):
sanctions = parents.get('economic_sanctions', np.zeros(1))[0]
pressure = parents.get('diplomatic_pressure', np.zeros(1))[0]
return np.clip(0.7 - 0.6 * sanctions - 0.3 * pressure + noise, 0, 1)
def mobilization_fn(parents, noise):
stability = parents.get('domestic_stability', np.zeros(1))[0]
return np.clip(0.3 - 0.7 * stability + noise, 0, 1)
def conflict_fn(parents, noise):
mobilization = parents.get('military_mobilization', np.zeros(1))[0]
sanctions = parents.get('economic_sanctions', np.zeros(1))[0]
return np.clip(0.8 * mobilization + 0.4 * sanctions + noise, 0, 1)
# Set functions
from scipy import stats
scm.set_function('economic_sanctions', sanctions_fn, stats.norm(0, 0.1))
scm.set_function('diplomatic_pressure', pressure_fn, stats.norm(0, 0.1))
scm.set_function('domestic_stability', stability_fn, stats.norm(0, 0.05))
scm.set_function('military_mobilization', mobilization_fn, stats.norm(0, 0.05))
scm.set_function('conflict_probability', conflict_fn, stats.norm(0, 0.05))
print(" Structural equations defined")
return scm
def simulate_baseline(simulator):
"""Simulate baseline (no intervention) scenario."""
print("\n2. Simulating Baseline Scenario...")
baseline = simulator.simulate_intervention(
intervention={},
n_samples=1000,
outcomes=['conflict_probability']
)
conflict_mean = np.mean(baseline['conflict_probability'])
conflict_std = np.std(baseline['conflict_probability'])
print(f" Baseline conflict probability: {conflict_mean:.3f} ± {conflict_std:.3f}")
return baseline
def simulate_interventions(simulator):
"""Simulate different policy interventions."""
print("\n3. Simulating Policy Interventions...")
interventions = [
{'economic_sanctions': 0.8, 'diplomatic_pressure': 0.3}, # Heavy sanctions
{'economic_sanctions': 0.3, 'diplomatic_pressure': 0.8}, # Heavy diplomacy
{'economic_sanctions': 0.6, 'diplomatic_pressure': 0.6}, # Balanced approach
]
intervention_names = [
"Heavy Sanctions",
"Heavy Diplomacy",
"Balanced Approach"
]
results = simulator.compare_interventions(
interventions,
outcome='conflict_probability',
n_samples=1000
)
print("\n Intervention Results:")
print(" " + "-" * 60)
for i, name in enumerate(intervention_names):
result = results[f'intervention_{i}']
print(f"\n {name}:")
print(f" Mean conflict probability: {result['mean']:.3f}")
print(f" Std deviation: {result['std']:.3f}")
print(f" 95% CI: [{result['q25']:.3f}, {result['q75']:.3f}]")
return results
def find_optimal_intervention(simulator):
"""Find optimal intervention to minimize conflict."""
print("\n4. Finding Optimal Intervention...")
optimal = simulator.optimal_intervention(
target_var='conflict_probability',
intervention_vars=['economic_sanctions', 'diplomatic_pressure'],
intervention_ranges={
'economic_sanctions': (0.0, 1.0),
'diplomatic_pressure': (0.0, 1.0)
},
objective='minimize',
n_trials=50,
n_samples=1000
)
print(f"\n Optimal intervention found:")
print(f" Economic Sanctions: {optimal['optimal_intervention']['economic_sanctions']:.3f}")
print(f" Diplomatic Pressure: {optimal['optimal_intervention']['diplomatic_pressure']:.3f}")
print(f" Expected conflict probability: {optimal['optimal_value']:.3f}")
return optimal
def counterfactual_analysis(simulator):
"""Perform counterfactual analysis."""
print("\n5. Counterfactual Analysis...")
# Observed scenario
observed = {
'economic_sanctions': 0.7,
'diplomatic_pressure': 0.2,
'domestic_stability': 0.4,
'military_mobilization': 0.6,
'conflict_probability': 0.65
}
print("\n Observed scenario:")
print(f" Sanctions: {observed['economic_sanctions']}")
print(f" Diplomacy: {observed['diplomatic_pressure']}")
print(f" Conflict: {observed['conflict_probability']}")
# Counterfactual: What if we had used more diplomacy?
counterfactual_intervention = {
'diplomatic_pressure': 0.8,
'economic_sanctions': 0.3
}
result = simulator.counterfactual_analysis(
observed=observed,
intervention=counterfactual_intervention,
outcome='conflict_probability'
)
print("\n Counterfactual: 'What if we had emphasized diplomacy?'")
print(f" Counterfactual conflict: {result['counterfactual_outcome']:.3f}")
print(f" Effect of intervention: {result['effect']:.3f}")
if result['effect'] < 0:
print(f" Conclusion: Diplomacy would have REDUCED conflict by {abs(result['effect']):.3f}")
else:
print(f" Conclusion: Diplomacy would have INCREASED conflict by {result['effect']:.3f}")
def main():
print("=" * 80)
print("GeoBotv1 - Intervention Simulation & Counterfactual Analysis")
print("=" * 80)
print("\nThis example demonstrates answering 'what if' questions:")
print("- 'What if the U.S. increases sanctions?'")
print("- 'What if we emphasize diplomacy over sanctions?'")
print("- 'What is the optimal policy mix?'")
print("- 'What would have happened if we had acted differently?'")
# Create SCM
scm = create_geopolitical_scm()
# Create intervention simulator
simulator = InterventionSimulator(scm)
# Run analyses
baseline = simulate_baseline(simulator)
interventions = simulate_interventions(simulator)
optimal = find_optimal_intervention(simulator)
counterfactual_analysis(simulator)
print("\n" + "=" * 80)
print("Key Insights:")
print("=" * 80)
print("\n1. Different interventions have different effects on conflict probability")
print("2. Optimal policy can be discovered through systematic search")
print("3. Counterfactual reasoning enables learning from alternative scenarios")
print("4. Causal models enable principled 'what if' analysis")
print("\n" + "=" * 80)
print("Example completed successfully!")
print("=" * 80)
if __name__ == "__main__":
main()
|