File size: 11,155 Bytes
484e3bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
"""
Example 4: Advanced Mathematical Features
This example demonstrates the research-grade advanced features:
- Sequential Monte Carlo (particle filtering)
- Variational Inference
- Stochastic Differential Equations (SDEs)
- Gradient-based Optimal Transport
- Kantorovich Duality
- Event Extraction and Database
- Continuous-time dynamics
These features enable measure-theoretic, rigorous forecasting.
"""
import numpy as np
import sys
sys.path.append('..')
from datetime import datetime, timedelta
from scipy import stats
# Advanced inference
from geobot.inference.particle_filter import SequentialMonteCarlo
from geobot.inference.variational_inference import VariationalInference
# SDE solvers
from geobot.simulation.sde_solver import (
EulerMaruyama,
Milstein,
JumpDiffusionProcess,
GeopoliticalSDE
)
# Advanced optimal transport
from geobot.core.advanced_optimal_transport import (
KantorovichDuality,
EntropicOT,
GradientBasedOT
)
# Event extraction
from geobot.data_ingestion.event_extraction import EventExtractor, EventType
from geobot.data_ingestion.event_database import EventDatabase
def demo_particle_filter():
"""Demonstrate Sequential Monte Carlo / Particle Filter."""
print("\n" + "="*80)
print("1. Sequential Monte Carlo (Particle Filter)")
print("="*80)
# Define nonlinear dynamics
def dynamics_fn(x, noise):
# Nonlinear geopolitical dynamics
# x[0] = tension, x[1] = stability
tension = x[0]
stability = x[1]
new_tension = tension + 0.1 * (1 - stability) + noise[0]
new_stability = stability - 0.05 * tension + noise[1]
return np.array([
np.clip(new_tension, 0, 1),
np.clip(new_stability, 0, 1)
])
def observation_fn(y, x):
# Log-likelihood of observation given state
# Observe tension with noise
predicted = x[0]
return stats.norm.logpdf(y[0], loc=predicted, scale=0.1)
# Create particle filter
pf = SequentialMonteCarlo(
n_particles=500,
state_dim=2,
dynamics_fn=dynamics_fn,
observation_fn=observation_fn
)
# Initialize from prior
pf.initialize_from_prior(lambda: np.array([0.3, 0.7]))
# Generate synthetic observations
observations = np.array([
[0.35], [0.40], [0.45], [0.50], [0.55],
[0.60], [0.65], [0.70], [0.75], [0.80]
])
print(f"\nRunning particle filter with {pf.n_particles} particles...")
print("Tracking hidden geopolitical state from noisy observations\n")
# Filter
states = pf.filter(observations)
# Show results
for i, state in enumerate(states[-5:]): # Last 5 steps
mean, cov = pf.get_state_estimate()
print(f"Step {i+6}: Tension={mean[0]:.3f}±{np.sqrt(cov[0,0]):.3f}, "
f"Stability={mean[1]:.3f}±{np.sqrt(cov[1,1]):.3f}, "
f"ESS={state.ess:.1f}")
print("\n✓ Particle filter successfully tracked nonlinear hidden states!")
def demo_sde_solver():
"""Demonstrate Stochastic Differential Equations."""
print("\n" + "="*80)
print("2. Stochastic Differential Equations (Continuous-Time Dynamics)")
print("="*80)
# Define SDE: dx = f(x,t)dt + g(x,t)dW
def drift(x, t):
# Mean-reverting to 0.5 (long-term stability)
return 0.2 * (0.5 - x)
def diffusion(x, t):
# Volatility increases with tension
return 0.1 * (1 + x)
# Create SDE solver
solver = EulerMaruyama(
drift=drift,
diffusion=diffusion,
x0=np.array([0.7]), # Start with high tension
t0=0.0
)
print("\nSimulating continuous-time geopolitical tension dynamics...")
print("SDE: dx = 0.2(0.5 - x)dt + 0.1(1 + x)dW\n")
# Integrate
solution = solver.integrate(T=10.0, dt=0.01, n_paths=5)
# Show statistics
final_values = solution.x[:, -1, 0]
print(f"After T=10.0 time units:")
print(f" Mean tension: {np.mean(final_values):.3f}")
print(f" Std deviation: {np.std(final_values):.3f}")
print(f" Min/Max: [{np.min(final_values):.3f}, {np.max(final_values):.3f}]")
print("\n✓ SDE solver successfully simulated continuous-time dynamics!")
def demo_jump_diffusion():
"""Demonstrate Jump-Diffusion Process."""
print("\n" + "="*80)
print("3. Jump-Diffusion Process (Modeling Black Swan Events)")
print("="*80)
# Create jump-diffusion process
jdp = JumpDiffusionProcess(
drift=0.05, # Slow drift
diffusion=0.1, # Normal volatility
jump_intensity=0.5, # 0.5 jumps per unit time (on average)
jump_mean=-0.2, # Negative jumps (crises)
jump_std=0.1,
x0=np.array([0.5])
)
print("\nSimulating conflict escalation with discrete shock events...")
print("Model: Continuous diffusion + Poisson jumps (λ=0.5, μ=-0.2)\n")
# Simulate
solution = jdp.simulate(T=20.0, dt=0.1, n_paths=3)
# Count jumps (approximately)
for path in range(3):
# Detect jumps as large changes
diffs = np.diff(solution.x[path, :, 0])
n_jumps = np.sum(np.abs(diffs) > 0.15)
final_value = solution.x[path, -1, 0]
print(f"Path {path+1}: {n_jumps} jumps detected, Final value: {final_value:.3f}")
print("\n✓ Jump-diffusion successfully modeled rare shock events!")
def demo_kantorovich_duality():
"""Demonstrate Kantorovich Duality."""
print("\n" + "="*80)
print("4. Kantorovich Duality (Optimal Transport Theory)")
print("="*80)
# Create two distributions (scenarios)
n, m = 10, 10
mu = np.ones(n) / n # Uniform source
nu = np.ones(m) / m # Uniform target
# Cost matrix (Euclidean distance)
X_source = np.random.rand(n, 2)
X_target = np.random.rand(m, 2) + np.array([0.5, 0.5]) # Shifted
from scipy.spatial.distance import cdist
C = cdist(X_source, X_target, metric='sqeuclidean')
# Solve primal and dual
kantorovich = KantorovichDuality()
print("\nComputing optimal transport between two geopolitical scenarios...")
print(f"Source: {n} points, Target: {m} points\n")
# Primal solution
coupling, primal_cost = kantorovich.solve_primal(mu, nu, C, method='emd')
print(f"Primal optimal cost: {primal_cost:.6f}")
# Dual solution
f, g, dual_value = kantorovich.solve_dual(mu, nu, C, max_iter=100)
print(f"Dual optimal value: {dual_value:.6f}")
# Verify duality gap
gap = kantorovich.verify_duality_gap(mu, nu, C)
print(f"Duality gap: {gap:.8f} (should be ≈ 0)")
if abs(gap) < 1e-4:
print("\n✓ Strong duality verified! Primal = Dual")
else:
print("\n⚠ Duality gap present (numerical approximation)")
def demo_entropic_ot():
"""Demonstrate Entropic Optimal Transport (Sinkhorn)."""
print("\n" + "="*80)
print("5. Entropic Optimal Transport (Sinkhorn Algorithm)")
print("="*80)
# Create distributions
n, m = 20, 20
mu = np.random.dirichlet(np.ones(n)) # Random distribution
nu = np.random.dirichlet(np.ones(m))
# Cost matrix
X = np.random.rand(n, 2)
Y = np.random.rand(m, 2)
from scipy.spatial.distance import cdist
C = cdist(X, Y, metric='euclidean')
# Entropic OT with different regularization
epsilons = [0.01, 0.05, 0.1]
print("\nComparing regularization levels for Sinkhorn algorithm...\n")
for eps in epsilons:
eot = EntropicOT(epsilon=eps)
coupling, cost = eot.sinkhorn(mu, nu, C, max_iter=500)
print(f"ε = {eps:0.2f}: Cost = {cost:.6f}, "
f"Entropy = {-np.sum(coupling * np.log(coupling + 1e-10)):.4f}")
print("\n✓ Entropic OT computed with fast Sinkhorn iterations!")
def demo_event_extraction():
"""Demonstrate Event Extraction Pipeline."""
print("\n" + "="*80)
print("6. Structured Event Extraction from Intelligence")
print("="*80)
# Sample intelligence text
intelligence_text = """
On March 15, 2024, tensions escalated between the United States and China
following a major military mobilization in the Taiwan Strait. NATO issued
a statement expressing concern. Russia announced sanctions on European Union
member states. India maintained diplomatic neutrality while calling for
de-escalation talks.
The United Nations Security Council convened an emergency session on March 16,
2024. Economic sanctions were proposed against China by the United States,
but Russia exercised its veto power.
"""
# Extract events
extractor = EventExtractor()
print("\nExtracting structured events from intelligence report...\n")
print("Input text:")
print("-" * 60)
print(intelligence_text[:200] + "...")
print("-" * 60)
events = extractor.extract_events(
intelligence_text,
source="intel_report_001",
default_timestamp=datetime(2024, 3, 15)
)
print(f"\n✓ Extracted {len(events)} geopolitical events:")
print()
for i, event in enumerate(events):
print(f"Event {i+1}:")
print(f" Type: {event.event_type.value}")
print(f" Actors: {', '.join(event.actors)}")
print(f" Magnitude: {event.magnitude:.2f}")
print(f" Timestamp: {event.timestamp.date()}")
print()
# Store in database
print("Storing events in database...")
with EventDatabase("demo_events.db") as db:
db.insert_events(events)
# Query back
conflict_events = db.query_events(
event_types=[EventType.CONFLICT, EventType.MILITARY_MOBILIZATION]
)
print(f"✓ Database contains {len(conflict_events)} conflict-related events")
print("\n✓ Event extraction and storage pipeline operational!")
def main():
"""Run all advanced feature demonstrations."""
print("=" * 80)
print("GeoBotv1 - Advanced Mathematical Features Demonstration")
print("=" * 80)
print("\nThis example showcases research-grade capabilities:")
print("• Sequential Monte Carlo (particle filtering)")
print("• Stochastic Differential Equations")
print("• Jump-Diffusion Processes")
print("• Kantorovich Duality in Optimal Transport")
print("• Entropic OT with Sinkhorn")
print("• Structured Event Extraction")
# Run demonstrations
demo_particle_filter()
demo_sde_solver()
demo_jump_diffusion()
demo_kantorovich_duality()
demo_entropic_ot()
demo_event_extraction()
print("\n" + "=" * 80)
print("All Advanced Features Demonstrated Successfully!")
print("=" * 80)
print("\nKey Insights:")
print("1. Particle filters handle nonlinear/non-Gaussian state estimation")
print("2. SDEs model continuous-time geopolitical dynamics rigorously")
print("3. Jump-diffusion captures both gradual change and sudden shocks")
print("4. Kantorovich duality provides theoretical foundation for OT")
print("5. Entropic OT enables fast computation via Sinkhorn")
print("6. Event extraction creates structured data for causal modeling")
print("\n" + "="*80)
if __name__ == "__main__":
main()
|