File size: 11,155 Bytes
484e3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
"""
Example 4: Advanced Mathematical Features

This example demonstrates the research-grade advanced features:
- Sequential Monte Carlo (particle filtering)
- Variational Inference
- Stochastic Differential Equations (SDEs)
- Gradient-based Optimal Transport
- Kantorovich Duality
- Event Extraction and Database
- Continuous-time dynamics

These features enable measure-theoretic, rigorous forecasting.
"""

import numpy as np
import sys
sys.path.append('..')

from datetime import datetime, timedelta
from scipy import stats

# Advanced inference
from geobot.inference.particle_filter import SequentialMonteCarlo
from geobot.inference.variational_inference import VariationalInference

# SDE solvers
from geobot.simulation.sde_solver import (
    EulerMaruyama,
    Milstein,
    JumpDiffusionProcess,
    GeopoliticalSDE
)

# Advanced optimal transport
from geobot.core.advanced_optimal_transport import (
    KantorovichDuality,
    EntropicOT,
    GradientBasedOT
)

# Event extraction
from geobot.data_ingestion.event_extraction import EventExtractor, EventType
from geobot.data_ingestion.event_database import EventDatabase


def demo_particle_filter():
    """Demonstrate Sequential Monte Carlo / Particle Filter."""
    print("\n" + "="*80)
    print("1. Sequential Monte Carlo (Particle Filter)")
    print("="*80)

    # Define nonlinear dynamics
    def dynamics_fn(x, noise):
        # Nonlinear geopolitical dynamics
        # x[0] = tension, x[1] = stability
        tension = x[0]
        stability = x[1]

        new_tension = tension + 0.1 * (1 - stability) + noise[0]
        new_stability = stability - 0.05 * tension + noise[1]

        return np.array([
            np.clip(new_tension, 0, 1),
            np.clip(new_stability, 0, 1)
        ])

    def observation_fn(y, x):
        # Log-likelihood of observation given state
        # Observe tension with noise
        predicted = x[0]
        return stats.norm.logpdf(y[0], loc=predicted, scale=0.1)

    # Create particle filter
    pf = SequentialMonteCarlo(
        n_particles=500,
        state_dim=2,
        dynamics_fn=dynamics_fn,
        observation_fn=observation_fn
    )

    # Initialize from prior
    pf.initialize_from_prior(lambda: np.array([0.3, 0.7]))

    # Generate synthetic observations
    observations = np.array([
        [0.35], [0.40], [0.45], [0.50], [0.55],
        [0.60], [0.65], [0.70], [0.75], [0.80]
    ])

    print(f"\nRunning particle filter with {pf.n_particles} particles...")
    print("Tracking hidden geopolitical state from noisy observations\n")

    # Filter
    states = pf.filter(observations)

    # Show results
    for i, state in enumerate(states[-5:]):  # Last 5 steps
        mean, cov = pf.get_state_estimate()
        print(f"Step {i+6}: Tension={mean[0]:.3f}±{np.sqrt(cov[0,0]):.3f}, "
              f"Stability={mean[1]:.3f}±{np.sqrt(cov[1,1]):.3f}, "
              f"ESS={state.ess:.1f}")

    print("\n✓ Particle filter successfully tracked nonlinear hidden states!")


def demo_sde_solver():
    """Demonstrate Stochastic Differential Equations."""
    print("\n" + "="*80)
    print("2. Stochastic Differential Equations (Continuous-Time Dynamics)")
    print("="*80)

    # Define SDE: dx = f(x,t)dt + g(x,t)dW
    def drift(x, t):
        # Mean-reverting to 0.5 (long-term stability)
        return 0.2 * (0.5 - x)

    def diffusion(x, t):
        # Volatility increases with tension
        return 0.1 * (1 + x)

    # Create SDE solver
    solver = EulerMaruyama(
        drift=drift,
        diffusion=diffusion,
        x0=np.array([0.7]),  # Start with high tension
        t0=0.0
    )

    print("\nSimulating continuous-time geopolitical tension dynamics...")
    print("SDE: dx = 0.2(0.5 - x)dt + 0.1(1 + x)dW\n")

    # Integrate
    solution = solver.integrate(T=10.0, dt=0.01, n_paths=5)

    # Show statistics
    final_values = solution.x[:, -1, 0]
    print(f"After T=10.0 time units:")
    print(f"  Mean tension: {np.mean(final_values):.3f}")
    print(f"  Std deviation: {np.std(final_values):.3f}")
    print(f"  Min/Max: [{np.min(final_values):.3f}, {np.max(final_values):.3f}]")

    print("\n✓ SDE solver successfully simulated continuous-time dynamics!")


def demo_jump_diffusion():
    """Demonstrate Jump-Diffusion Process."""
    print("\n" + "="*80)
    print("3. Jump-Diffusion Process (Modeling Black Swan Events)")
    print("="*80)

    # Create jump-diffusion process
    jdp = JumpDiffusionProcess(
        drift=0.05,  # Slow drift
        diffusion=0.1,  # Normal volatility
        jump_intensity=0.5,  # 0.5 jumps per unit time (on average)
        jump_mean=-0.2,  # Negative jumps (crises)
        jump_std=0.1,
        x0=np.array([0.5])
    )

    print("\nSimulating conflict escalation with discrete shock events...")
    print("Model: Continuous diffusion + Poisson jumps (λ=0.5, μ=-0.2)\n")

    # Simulate
    solution = jdp.simulate(T=20.0, dt=0.1, n_paths=3)

    # Count jumps (approximately)
    for path in range(3):
        # Detect jumps as large changes
        diffs = np.diff(solution.x[path, :, 0])
        n_jumps = np.sum(np.abs(diffs) > 0.15)
        final_value = solution.x[path, -1, 0]
        print(f"Path {path+1}: {n_jumps} jumps detected, Final value: {final_value:.3f}")

    print("\n✓ Jump-diffusion successfully modeled rare shock events!")


def demo_kantorovich_duality():
    """Demonstrate Kantorovich Duality."""
    print("\n" + "="*80)
    print("4. Kantorovich Duality (Optimal Transport Theory)")
    print("="*80)

    # Create two distributions (scenarios)
    n, m = 10, 10
    mu = np.ones(n) / n  # Uniform source
    nu = np.ones(m) / m  # Uniform target

    # Cost matrix (Euclidean distance)
    X_source = np.random.rand(n, 2)
    X_target = np.random.rand(m, 2) + np.array([0.5, 0.5])  # Shifted
    from scipy.spatial.distance import cdist
    C = cdist(X_source, X_target, metric='sqeuclidean')

    # Solve primal and dual
    kantorovich = KantorovichDuality()

    print("\nComputing optimal transport between two geopolitical scenarios...")
    print(f"Source: {n} points, Target: {m} points\n")

    # Primal solution
    coupling, primal_cost = kantorovich.solve_primal(mu, nu, C, method='emd')
    print(f"Primal optimal cost: {primal_cost:.6f}")

    # Dual solution
    f, g, dual_value = kantorovich.solve_dual(mu, nu, C, max_iter=100)
    print(f"Dual optimal value: {dual_value:.6f}")

    # Verify duality gap
    gap = kantorovich.verify_duality_gap(mu, nu, C)
    print(f"Duality gap: {gap:.8f} (should be ≈ 0)")

    if abs(gap) < 1e-4:
        print("\n✓ Strong duality verified! Primal = Dual")
    else:
        print("\n⚠ Duality gap present (numerical approximation)")


def demo_entropic_ot():
    """Demonstrate Entropic Optimal Transport (Sinkhorn)."""
    print("\n" + "="*80)
    print("5. Entropic Optimal Transport (Sinkhorn Algorithm)")
    print("="*80)

    # Create distributions
    n, m = 20, 20
    mu = np.random.dirichlet(np.ones(n))  # Random distribution
    nu = np.random.dirichlet(np.ones(m))

    # Cost matrix
    X = np.random.rand(n, 2)
    Y = np.random.rand(m, 2)
    from scipy.spatial.distance import cdist
    C = cdist(X, Y, metric='euclidean')

    # Entropic OT with different regularization
    epsilons = [0.01, 0.05, 0.1]

    print("\nComparing regularization levels for Sinkhorn algorithm...\n")

    for eps in epsilons:
        eot = EntropicOT(epsilon=eps)
        coupling, cost = eot.sinkhorn(mu, nu, C, max_iter=500)

        print(f"ε = {eps:0.2f}: Cost = {cost:.6f}, "
              f"Entropy = {-np.sum(coupling * np.log(coupling + 1e-10)):.4f}")

    print("\n✓ Entropic OT computed with fast Sinkhorn iterations!")


def demo_event_extraction():
    """Demonstrate Event Extraction Pipeline."""
    print("\n" + "="*80)
    print("6. Structured Event Extraction from Intelligence")
    print("="*80)

    # Sample intelligence text
    intelligence_text = """
    On March 15, 2024, tensions escalated between the United States and China
    following a major military mobilization in the Taiwan Strait. NATO issued
    a statement expressing concern. Russia announced sanctions on European Union
    member states. India maintained diplomatic neutrality while calling for
    de-escalation talks.

    The United Nations Security Council convened an emergency session on March 16,
    2024. Economic sanctions were proposed against China by the United States,
    but Russia exercised its veto power.
    """

    # Extract events
    extractor = EventExtractor()

    print("\nExtracting structured events from intelligence report...\n")
    print("Input text:")
    print("-" * 60)
    print(intelligence_text[:200] + "...")
    print("-" * 60)

    events = extractor.extract_events(
        intelligence_text,
        source="intel_report_001",
        default_timestamp=datetime(2024, 3, 15)
    )

    print(f"\n✓ Extracted {len(events)} geopolitical events:")
    print()

    for i, event in enumerate(events):
        print(f"Event {i+1}:")
        print(f"  Type: {event.event_type.value}")
        print(f"  Actors: {', '.join(event.actors)}")
        print(f"  Magnitude: {event.magnitude:.2f}")
        print(f"  Timestamp: {event.timestamp.date()}")
        print()

    # Store in database
    print("Storing events in database...")
    with EventDatabase("demo_events.db") as db:
        db.insert_events(events)

        # Query back
        conflict_events = db.query_events(
            event_types=[EventType.CONFLICT, EventType.MILITARY_MOBILIZATION]
        )

        print(f"✓ Database contains {len(conflict_events)} conflict-related events")

    print("\n✓ Event extraction and storage pipeline operational!")


def main():
    """Run all advanced feature demonstrations."""
    print("=" * 80)
    print("GeoBotv1 - Advanced Mathematical Features Demonstration")
    print("=" * 80)
    print("\nThis example showcases research-grade capabilities:")
    print("• Sequential Monte Carlo (particle filtering)")
    print("• Stochastic Differential Equations")
    print("• Jump-Diffusion Processes")
    print("• Kantorovich Duality in Optimal Transport")
    print("• Entropic OT with Sinkhorn")
    print("• Structured Event Extraction")

    # Run demonstrations
    demo_particle_filter()
    demo_sde_solver()
    demo_jump_diffusion()
    demo_kantorovich_duality()
    demo_entropic_ot()
    demo_event_extraction()

    print("\n" + "=" * 80)
    print("All Advanced Features Demonstrated Successfully!")
    print("=" * 80)
    print("\nKey Insights:")
    print("1. Particle filters handle nonlinear/non-Gaussian state estimation")
    print("2. SDEs model continuous-time geopolitical dynamics rigorously")
    print("3. Jump-diffusion captures both gradual change and sudden shocks")
    print("4. Kantorovich duality provides theoretical foundation for OT")
    print("5. Entropic OT enables fast computation via Sinkhorn")
    print("6. Event extraction creates structured data for causal modeling")

    print("\n" + "="*80)


if __name__ == "__main__":
    main()