File size: 20,304 Bytes
484e3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
"""
Example 5: Complete GeoBotv1 Framework - Final Features

This example demonstrates the final critical components that complete GeoBotv1
to 100% research-grade capability:

1. Vector Autoregression (VAR/SVAR/DFM) - Econometric time-series analysis
2. Hawkes Processes - Conflict contagion and self-exciting dynamics
3. Quasi-Experimental Methods - Causal inference without randomization
   - Synthetic Control Method (SCM)
   - Difference-in-Differences (DiD)
   - Regression Discontinuity Design (RDD)
   - Instrumental Variables (IV)

These methods are essential for:
- Multi-country forecasting with spillovers (VAR)
- Modeling conflict escalation and contagion (Hawkes)
- Estimating policy effects and counterfactuals (quasi-experimental)

GeoBotv1 is now COMPLETE with all research-grade mathematical components!
"""

import numpy as np
import sys
sys.path.append('..')

from datetime import datetime, timedelta

# Time-series models
from geobot.timeseries import (
    VARModel,
    SVARModel,
    DynamicFactorModel,
    GrangerCausality,
    UnivariateHawkesProcess,
    MultivariateHawkesProcess,
    ConflictContagionModel
)

# Quasi-experimental methods
from geobot.models import (
    SyntheticControlMethod,
    DifferenceinDifferences,
    RegressionDiscontinuity,
    InstrumentalVariables
)


def demo_var_model():
    """Demonstrate Vector Autoregression for multi-country forecasting."""
    print("\n" + "="*80)
    print("1. Vector Autoregression (VAR) - Multi-Country Spillovers")
    print("="*80)

    # Simulate data for 3 countries
    # Country dynamics with interdependencies
    np.random.seed(42)
    T = 100
    n_vars = 3

    # Generate VAR(2) data
    # Y_t = A_1 Y_{t-1} + A_2 Y_{t-2} + noise
    A1 = np.array([
        [0.5, 0.2, 0.1],   # Country 1: affected by all
        [0.1, 0.6, 0.15],  # Country 2: strong self-dependence
        [0.05, 0.1, 0.55]  # Country 3: weak spillovers
    ])
    A2 = np.array([
        [0.2, 0.05, 0.0],
        [0.1, 0.1, 0.05],
        [0.0, 0.05, 0.2]
    ])

    # Simulate
    data = np.zeros((T, n_vars))
    data[0] = np.random.randn(n_vars) * 0.1
    data[1] = np.random.randn(n_vars) * 0.1

    for t in range(2, T):
        data[t] = (A1 @ data[t-1] + A2 @ data[t-2] +
                   np.random.randn(n_vars) * 0.1)

    print(f"\nSimulated {T} time periods for {n_vars} countries")
    print(f"Variables: GDP growth, Military spending, Stability index\n")

    # Fit VAR model
    var = VARModel(n_lags=2)
    variable_names = ['GDP_growth', 'Military_spend', 'Stability']
    results = var.fit(data, variable_names)

    print(f"VAR({results.n_lags}) Estimation Results:")
    print(f"  Log-likelihood: {results.log_likelihood:.2f}")
    print(f"  AIC: {results.aic:.2f}")
    print(f"  BIC: {results.bic:.2f}")

    # Forecast
    forecast = var.forecast(results, steps=10)
    print(f"\n10-step ahead forecast:")
    print(f"  GDP growth: {forecast[-1, 0]:.3f}")
    print(f"  Military spending: {forecast[-1, 1]:.3f}")
    print(f"  Stability: {forecast[-1, 2]:.3f}")

    # Granger causality
    print("\nGranger Causality Tests:")
    for i in range(n_vars):
        for j in range(n_vars):
            if i != j:
                gc_result = var.granger_causality(results, i, j)
                if gc_result['p_value'] < 0.05:
                    print(f"  {variable_names[j]} β†’ {variable_names[i]}: "
                          f"F={gc_result['f_statistic']:.2f}, p={gc_result['p_value']:.3f} βœ“")

    # Impulse response functions
    irf_result = var.impulse_response(results, steps=10)
    print("\nImpulse Response Functions computed (10 steps)")
    print(f"  Shock to Military spending β†’ GDP growth at t=5: {irf_result.irf[0, 1, 5]:.4f}")

    # Forecast error variance decomposition
    fevd = var.forecast_error_variance_decomposition(results, steps=10)
    print("\nForecast Error Variance Decomposition (horizon=10):")
    for i, var_name in enumerate(variable_names):
        contributions = fevd[i, :, -1]
        print(f"  {var_name} variance explained by:")
        for j, source_name in enumerate(variable_names):
            print(f"    {source_name}: {contributions[j]:.1%}")

    print("\nβœ“ VAR model demonstrates multi-country interdependencies!")


def demo_hawkes_process():
    """Demonstrate Hawkes processes for conflict contagion."""
    print("\n" + "="*80)
    print("2. Hawkes Processes - Conflict Escalation and Contagion")
    print("="*80)

    # Simulate conflict events
    print("\nSimulating conflict events with self-excitation...")
    hawkes = UnivariateHawkesProcess()

    # Parameters: baseline=0.3, excitation=0.6, decay=1.2
    # Branching ratio = 0.6/1.2 = 0.5 (stable, subcritical)
    events = hawkes.simulate(mu=0.3, alpha=0.6, beta=1.2, T=100.0)

    print(f"Generated {len(events)} conflict events over 100 time units")
    print(f"Average rate: {len(events) / 100.0:.2f} events/unit\n")

    # Fit model
    result = hawkes.fit(events, T=100.0)

    print("Estimated Hawkes Parameters:")
    print(f"  Baseline intensity (ΞΌ): {result.params.mu:.3f}")
    print(f"  Excitation (Ξ±): {result.params.alpha:.3f}")
    print(f"  Decay rate (Ξ²): {result.params.beta:.3f}")
    print(f"  Branching ratio: {result.params.branching_ratio:.3f}")
    print(f"  Process is {'STABLE' if result.params.is_stable else 'EXPLOSIVE'}")

    # Predict intensity
    t_future = 105.0
    intensity = hawkes.predict_intensity(events, result.params, t_future)
    print(f"\nPredicted conflict intensity at t={t_future}: {intensity:.3f}")

    # Multivariate: conflict contagion between countries
    print("\n" + "-"*80)
    print("Multivariate Hawkes: Cross-Country Conflict Contagion")
    print("-"*80)

    countries = ['Syria', 'Iraq', 'Lebanon']
    contagion_model = ConflictContagionModel(countries=countries)

    # Simulate with cross-excitation
    mu = np.array([0.5, 0.3, 0.2])  # Different baseline rates
    alpha = np.array([
        [0.3, 0.15, 0.1],   # Syria: high self-excitation, moderate contagion
        [0.2, 0.25, 0.1],   # Iraq: affected by Syria
        [0.15, 0.1, 0.2]    # Lebanon: affected by both
    ])
    beta = np.ones((3, 3)) * 1.5

    multi_hawkes = MultivariateHawkesProcess(n_dimensions=3)
    events_multi = multi_hawkes.simulate(mu=mu, alpha=alpha, beta=beta, T=100.0)

    print(f"\nSimulated events:")
    for i, country in enumerate(countries):
        print(f"  {country}: {len(events_multi[i])} events")

    # Fit multivariate model
    events_dict = {country: events_multi[i] for i, country in enumerate(countries)}
    fit_result = contagion_model.fit(events_dict, T=100.0)

    print(f"\nFitted contagion model:")
    print(f"  Spectral radius: {fit_result['spectral_radius']:.3f} (< 1 = stable)")
    print(f"  Most contagious source: {fit_result['most_contagious_source']}")
    print(f"  Most vulnerable target: {fit_result['most_vulnerable_target']}")

    # Identify contagion pathways
    pathways = contagion_model.identify_contagion_pathways(fit_result, threshold=0.1)
    print("\nSignificant contagion pathways (branching ratio > 0.1):")
    for source, target, strength in pathways[:5]:
        print(f"  {source} β†’ {target}: {strength:.3f}")

    # Risk assessment
    risks = contagion_model.contagion_risk(events_dict, fit_result, t=105.0, horizon=5.0)
    print("\nConflict risk over next 5 time units:")
    for country, risk in risks.items():
        print(f"  {country}: {risk:.1%}")

    print("\nβœ“ Hawkes processes capture conflict escalation dynamics!")


def demo_synthetic_control():
    """Demonstrate Synthetic Control Method."""
    print("\n" + "="*80)
    print("3. Synthetic Control Method - Policy Impact Estimation")
    print("="*80)

    # Scenario: Estimate effect of sanctions on target country's GDP
    print("\nScenario: Economic sanctions imposed on Country A at t=50")
    print("Question: What is the causal effect on GDP growth?\n")

    # Generate data
    np.random.seed(42)
    T = 100
    J = 10  # 10 control countries

    # Pre-treatment: all countries follow similar trends
    time = np.arange(T)
    trend = 0.02 * time + np.random.randn(T) * 0.1

    # Control countries
    control_outcomes = np.zeros((T, J))
    for j in range(J):
        control_outcomes[:, j] = trend + np.random.randn(T) * 0.15 + np.random.randn() * 0.5

    # Treated country (matches controls pre-treatment)
    treated_outcome = trend + np.random.randn(T) * 0.15

    # Treatment effect: negative shock starting at t=50
    treatment_time = 50
    true_effect = -0.8
    treated_outcome[treatment_time:] += true_effect + np.random.randn(T - treatment_time) * 0.1

    # Fit SCM
    scm = SyntheticControlMethod()
    result = scm.fit(
        treated_outcome=treated_outcome,
        control_outcomes=control_outcomes,
        treatment_time=treatment_time,
        control_names=[f"Country_{j+1}" for j in range(J)]
    )

    print("Synthetic Control Results:")
    print(f"  Pre-treatment fit (RMSPE): {result.pre_treatment_fit:.4f}")
    print(f"\nSynthetic Country A is weighted combination of:")
    for j, weight in enumerate(result.weights):
        if weight > 0.01:  # Only show significant weights
            print(f"    {result.control_units[j]}: {weight:.1%}")

    # Treatment effects
    avg_effect = np.mean(result.treatment_effect[treatment_time:])
    print(f"\nEstimated treatment effect (post-sanctions):")
    print(f"  Average: {avg_effect:.3f} (true effect: {true_effect:.3f})")
    print(f"  Final period: {result.treatment_effect[-1]:.3f}")

    # Placebo test
    p_value = scm.placebo_test(treated_outcome, control_outcomes, treatment_time, n_permutations=J)
    print(f"\nPlacebo test p-value: {p_value:.3f}")
    if p_value < 0.05:
        print("  βœ“ Effect is statistically significant (unusual compared to placebos)")
    else:
        print("  βœ— Effect not significant (could be random)")

    print("\nβœ“ Synthetic control provides credible counterfactual!")


def demo_difference_in_differences():
    """Demonstrate Difference-in-Differences."""
    print("\n" + "="*80)
    print("4. Difference-in-Differences (DiD) - Regime Change Analysis")
    print("="*80)

    # Scenario: Regime change in treated country
    print("\nScenario: Regime change in Country T at t=50")
    print("Compare to similar countries without regime change\n")

    np.random.seed(42)

    # Pre-treatment (similar trends)
    treated_pre = 3.0 + np.random.randn(50) * 0.5
    control_pre = 3.2 + np.random.randn(50) * 0.5

    # Post-treatment (treatment effect = +1.5 on outcome)
    true_effect = 1.5
    treated_post = 3.0 + true_effect + np.random.randn(50) * 0.5
    control_post = 3.2 + np.random.randn(50) * 0.5  # No effect

    # Estimate DiD
    did = DifferenceinDifferences()
    result = did.estimate(treated_pre, treated_post, control_pre, control_post)

    print("Difference-in-Differences Results:")
    print(f"\n  Pre-treatment difference: {result.pre_treatment_diff:.3f}")
    print(f"  Post-treatment difference: {result.post_treatment_diff:.3f}")
    print(f"\n  Average Treatment Effect (ATT): {result.att:.3f}")
    print(f"  Standard error: {result.se:.3f}")
    print(f"  t-statistic: {result.t_stat:.3f}")
    print(f"  p-value: {result.p_value:.4f}")

    if result.p_value < 0.05:
        print(f"\n  βœ“ Regime change had significant effect (true effect: {true_effect:.3f})")
    else:
        print("\n  βœ— Effect not statistically significant")

    # Assumption check
    if abs(result.pre_treatment_diff) < 0.5:
        print("\n  βœ“ Parallel trends assumption plausible (small pre-treatment diff)")
    else:
        print("\n  ⚠ Parallel trends questionable (large pre-treatment diff)")

    print("\nβœ“ DiD isolates causal effect of regime change!")


def demo_regression_discontinuity():
    """Demonstrate Regression Discontinuity Design."""
    print("\n" + "="*80)
    print("5. Regression Discontinuity Design (RDD) - Election Effects")
    print("="*80)

    # Scenario: Effect of winning election on military policy
    print("\nScenario: Effect of hawkish candidate winning election")
    print("Running variable: Vote share (cutoff = 50%)")
    print("Outcome: Military spending increase\n")

    np.random.seed(42)
    n = 500

    # Vote share (running variable)
    vote_share = np.random.uniform(0.3, 0.7, n)

    # Outcome: military spending
    # Smooth function of vote share + discontinuity at 50%
    outcome = 2.0 + 1.5 * vote_share + np.random.randn(n) * 0.3

    # Treatment effect: +0.8 if vote > 50%
    true_effect = 0.8
    outcome[vote_share >= 0.5] += true_effect

    # Estimate RDD
    rdd = RegressionDiscontinuity(cutoff=0.5)
    result = rdd.estimate_sharp(
        running_var=vote_share,
        outcome=outcome,
        bandwidth=0.15,  # 15% bandwidth
        kernel='triangular'
    )

    print("Regression Discontinuity Results:")
    print(f"\n  Bandwidth: {result.bandwidth:.3f}")
    print(f"  Observations below cutoff: {result.n_left}")
    print(f"  Observations above cutoff: {result.n_right}")
    print(f"\n  Treatment effect (LATE): {result.treatment_effect:.3f}")
    print(f"  Standard error: {result.se:.3f}")
    print(f"  t-statistic: {result.t_stat:.3f}")
    print(f"  p-value: {result.p_value:.4f}")

    if result.p_value < 0.05:
        print(f"\n  βœ“ Winning election causes increase in military spending")
        print(f"    (true effect: {true_effect:.3f})")
    else:
        print("\n  βœ— Effect not statistically significant")

    print("\nβœ“ RDD exploits threshold-based treatment assignment!")


def demo_instrumental_variables():
    """Demonstrate Instrumental Variables."""
    print("\n" + "="*80)
    print("6. Instrumental Variables (IV) - Trade and Conflict")
    print("="*80)

    # Scenario: Effect of trade on conflict (trade is endogenous)
    print("\nScenario: Does trade reduce conflict?")
    print("Problem: Trade is endogenous (reverse causality, omitted variables)")
    print("Instrument: Geographic distance to major trade routes\n")

    np.random.seed(42)
    n = 300

    # Instrument: distance (exogenous)
    distance = np.random.uniform(100, 1000, n)

    # Unobserved confounders
    unobserved = np.random.randn(n)

    # Trade (endogenous): affected by distance and confounders
    trade = 50 - 0.03 * distance + 2.0 * unobserved + np.random.randn(n) * 5

    # Conflict: true effect of trade = -0.15, but also affected by confounders
    true_effect = -0.15
    conflict = 10 + true_effect * trade - 1.5 * unobserved + np.random.randn(n) * 2

    # Estimate with IV
    iv = InstrumentalVariables()
    result = iv.estimate_2sls(
        outcome=conflict,
        endogenous=trade,
        instrument=distance
    )

    print("Instrumental Variables (2SLS) Results:")
    print(f"\n  First stage F-statistic: {result.first_stage_f:.2f}")
    if result.weak_instrument:
        print("  ⚠ Warning: Weak instrument (F < 10)")
    else:
        print("  βœ“ Strong instrument (F > 10)")

    print(f"\n  OLS estimate (biased): {result.beta_ols[0]:.4f}")
    print(f"  IV estimate (consistent): {result.beta_iv[0]:.4f}")
    print(f"  IV standard error: {result.se_iv[0]:.4f}")
    print(f"\n  True causal effect: {true_effect:.4f}")

    # Hausman test (informal)
    if abs(result.beta_ols[0] - result.beta_iv[0]) > 0.05:
        print("\n  βœ“ OLS and IV differ substantially β†’ endogeneity present")
        print("    IV corrects for bias!")
    else:
        print("\n  OLS and IV similar β†’ endogeneity may be small")

    print("\nβœ“ IV isolates causal effect using exogenous variation!")


def demo_dynamic_factor_model():
    """Demonstrate Dynamic Factor Model for nowcasting."""
    print("\n" + "="*80)
    print("7. Dynamic Factor Model (DFM) - High-Dimensional Nowcasting")
    print("="*80)

    # Scenario: Nowcast geopolitical tension from many indicators
    print("\nScenario: Nowcast regional tension from 50 economic/political indicators")
    print("DFM extracts common latent factors driving all indicators\n")

    np.random.seed(42)
    T = 200
    n_indicators = 50
    n_factors = 3

    # True factors (latent tensions)
    true_factors = np.zeros((T, n_factors))
    for k in range(n_factors):
        # AR(1) dynamics
        for t in range(1, T):
            true_factors[t, k] = 0.8 * true_factors[t-1, k] + np.random.randn() * 0.5

    # Factor loadings (how indicators load on factors)
    true_loadings = np.random.randn(n_indicators, n_factors)

    # Observed indicators = factors * loadings + idiosyncratic noise
    data = true_factors @ true_loadings.T + np.random.randn(T, n_indicators) * 0.5

    # Fit DFM
    dfm = DynamicFactorModel(n_factors=3, n_lags=1)
    model = dfm.fit(data)

    print(f"Dynamic Factor Model Results:")
    print(f"\n  Number of indicators: {n_indicators}")
    print(f"  Number of factors: {n_factors}")
    print(f"  Explained variance: {model['explained_variance_ratio']:.1%}")

    # Extracted factors
    factors = model['factors']
    print(f"\n  Extracted factor dimensions: {factors.shape}")
    print(f"  Factor 1 final value: {factors[-1, 0]:.3f}")
    print(f"  Factor 2 final value: {factors[-1, 1]:.3f}")
    print(f"  Factor 3 final value: {factors[-1, 2]:.3f}")

    # Forecast
    forecast = dfm.forecast(model, steps=10)
    print(f"\n  10-step ahead forecast dimensions: {forecast.shape}")
    print(f"  Average forecasted indicator value: {np.mean(forecast[-1]):.3f}")

    # Correlation with true factors
    corr_0 = np.corrcoef(true_factors[:, 0], factors[:, 0])[0, 1]
    print(f"\n  Factor recovery (correlation with true): {abs(corr_0):.3f}")

    print("\nβœ“ DFM reduces dimensionality while preserving information!")


def main():
    """Run all demonstrations of final features."""
    print("=" * 80)
    print("GeoBotv1 - COMPLETE FRAMEWORK DEMONSTRATION")
    print("=" * 80)
    print("\nThis example showcases the final components that complete GeoBotv1:")
    print("β€’ Vector Autoregression (VAR/SVAR/DFM)")
    print("β€’ Hawkes Processes for conflict contagion")
    print("β€’ Quasi-Experimental Causal Inference")
    print("  - Synthetic Control Method")
    print("  - Difference-in-Differences")
    print("  - Regression Discontinuity Design")
    print("  - Instrumental Variables")

    # Run all demonstrations
    demo_var_model()
    demo_hawkes_process()
    demo_synthetic_control()
    demo_difference_in_differences()
    demo_regression_discontinuity()
    demo_instrumental_variables()
    demo_dynamic_factor_model()

    print("\n" + "=" * 80)
    print("GeoBotv1 Framework is NOW 100% COMPLETE!")
    print("=" * 80)
    print("\nπŸŽ‰ All Research-Grade Mathematical Components Implemented:")
    print("\nπŸ“Š CORE FRAMEWORKS:")
    print("  βœ“ Optimal Transport (Wasserstein, Kantorovich, Sinkhorn)")
    print("  βœ“ Causal Inference (DAGs, SCMs, Do-Calculus)")
    print("  βœ“ Bayesian Inference (MCMC, Particle Filters, VI)")
    print("  βœ“ Stochastic Processes (SDEs, Jump-Diffusion)")
    print("  βœ“ Time-Series Models (Kalman, HMM, VAR, Hawkes)")
    print("  βœ“ Quasi-Experimental Methods (SCM, DiD, RDD, IV)")
    print("  βœ“ Machine Learning (GNNs, Risk Scoring, Embeddings)")
    print("\nπŸ“ˆ SPECIALIZED CAPABILITIES:")
    print("  βœ“ Multi-country interdependency modeling (VAR)")
    print("  βœ“ Conflict contagion and escalation (Hawkes)")
    print("  βœ“ Policy counterfactuals (Synthetic Control)")
    print("  βœ“ Regime change effects (Difference-in-Differences)")
    print("  βœ“ Election outcomes impact (Regression Discontinuity)")
    print("  βœ“ Trade-conflict nexus (Instrumental Variables)")
    print("  βœ“ High-dimensional nowcasting (Dynamic Factor Models)")
    print("\nπŸ”¬ MATHEMATICAL RIGOR:")
    print("  βœ“ Measure-theoretic probability foundations")
    print("  βœ“ Continuous-time dynamics (SDEs)")
    print("  βœ“ Causal identification strategies")
    print("  βœ“ Structural econometric methods")
    print("  βœ“ Point process theory")
    print("  βœ“ Optimal transport geometry")
    print("\nπŸ’‘ GeoBotv1 is ready for production geopolitical forecasting!")
    print("=" * 80 + "\n")


if __name__ == "__main__":
    main()