File size: 3,256 Bytes
484e3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# GeoBotv1 Examples

This directory contains example scripts demonstrating the capabilities of GeoBotv1.

## Examples Overview

### 01_basic_usage.py
Basic introduction to GeoBotv1 core components:
- Creating geopolitical scenarios
- Building causal graphs
- Running Monte Carlo simulations
- Bayesian belief updating
- Uncertainty quantification

**Run it:**
```bash
python 01_basic_usage.py
```

### 02_data_ingestion.py
Demonstrates data ingestion capabilities:
- PDF document processing
- Web scraping and article extraction
- News aggregation from multiple sources
- Intelligence extraction from documents
- Entity and keyword extraction

**Run it:**
```bash
python 02_data_ingestion.py
```

**Note:** For full functionality, install optional dependencies:
```bash
pip install pypdf pdfplumber beautifulsoup4 newspaper3k trafilatura feedparser
```

### 03_intervention_simulation.py
Advanced intervention and counterfactual analysis:
- Policy intervention simulation
- Comparing multiple policy options
- Finding optimal interventions
- Counterfactual reasoning ("what if" scenarios)
- Causal effect estimation

**Run it:**
```bash
python 03_intervention_simulation.py
```

### 04_advanced_features.py
Research-grade advanced mathematical features:
- Sequential Monte Carlo (particle filtering) for nonlinear state estimation
- Stochastic Differential Equations (Euler-Maruyama, Milstein, Jump-Diffusion)
- Gradient-based Optimal Transport with Kantorovich duality
- Entropic OT with Sinkhorn algorithm
- Structured event extraction from intelligence text
- Event database with temporal normalization

**Run it:**
```bash
python 04_advanced_features.py
```

**Note:** Some features require additional dependencies:
```bash
pip install torch  # For advanced features
```

## Additional Resources

### Creating Custom Scenarios
```python
from geobot.core.scenario import Scenario
import numpy as np

scenario = Scenario(
    name="custom_scenario",
    features={
        'tension': np.array([0.7]),
        'stability': np.array([0.4]),
    },
    probability=1.0
)
```

### Building Causal Models
```python
from geobot.models.causal_graph import CausalGraph

graph = CausalGraph(name="my_model")
graph.add_node('cause')
graph.add_node('effect')
graph.add_edge('cause', 'effect', strength=0.8)
```

### Monte Carlo Simulation
```python
from geobot.simulation.monte_carlo import MonteCarloEngine, SimulationConfig

config = SimulationConfig(n_simulations=1000, time_horizon=100)
engine = MonteCarloEngine(config)
```

### Web Scraping
```python
from geobot.data_ingestion.web_scraper import ArticleExtractor

extractor = ArticleExtractor()
article = extractor.extract_article('https://example.com/article')
print(article['title'])
print(article['text'])
```

### PDF Processing
```python
from geobot.data_ingestion.pdf_reader import PDFProcessor

processor = PDFProcessor()
result = processor.extract_intelligence('report.pdf')
print(f"Risk Level: {result['intelligence']['risk_level']}")
```

## Need Help?

- Check the main README.md in the project root
- Review the module documentation in each package
- Examine the source code for detailed implementation

## Contributing

Have an interesting use case? Create a new example script and submit a PR!