File size: 19,121 Bytes
484e3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
"""
Bayesian Forecasting Module for GeoBotv1

Provides Bayesian belief updating, prior construction, and probabilistic forecasting
for geopolitical scenarios. Integrates with GeoBot 2.0 analytical framework.
"""

from dataclasses import dataclass, field
from typing import Dict, List, Any, Optional, Callable, Tuple
from enum import Enum
import numpy as np
from scipy import stats
from scipy.optimize import minimize


class PriorType(Enum):
    """Types of prior distributions."""
    UNIFORM = "uniform"
    NORMAL = "normal"
    BETA = "beta"
    GAMMA = "gamma"
    EXPERT_INFORMED = "expert_informed"
    HISTORICAL = "historical"


class EvidenceType(Enum):
    """Types of evidence for belief updating."""
    INTELLIGENCE_REPORT = "intelligence_report"
    SATELLITE_IMAGERY = "satellite_imagery"
    ECONOMIC_DATA = "economic_data"
    MILITARY_MOVEMENT = "military_movement"
    DIPLOMATIC_SIGNAL = "diplomatic_signal"
    OPEN_SOURCE = "open_source"


@dataclass
class GeopoliticalPrior:
    """
    Prior distribution for geopolitical parameter.

    Attributes
    ----------
    parameter_name : str
        Name of the parameter
    prior_type : PriorType
        Type of prior distribution
    parameters : Dict[str, float]
        Distribution parameters
    description : str
        Description of what this parameter represents
    """
    parameter_name: str
    prior_type: PriorType
    parameters: Dict[str, float]
    description: str = ""

    def sample(self, n_samples: int = 1000, random_state: Optional[int] = None) -> np.ndarray:
        """
        Sample from prior distribution.

        Parameters
        ----------
        n_samples : int
            Number of samples
        random_state : Optional[int]
            Random seed

        Returns
        -------
        np.ndarray
            Samples from prior
        """
        if random_state is not None:
            np.random.seed(random_state)

        if self.prior_type == PriorType.UNIFORM:
            low = self.parameters['low']
            high = self.parameters['high']
            return np.random.uniform(low, high, n_samples)

        elif self.prior_type == PriorType.NORMAL:
            mean = self.parameters['mean']
            std = self.parameters['std']
            return np.random.normal(mean, std, n_samples)

        elif self.prior_type == PriorType.BETA:
            alpha = self.parameters['alpha']
            beta = self.parameters['beta']
            return np.random.beta(alpha, beta, n_samples)

        elif self.prior_type == PriorType.GAMMA:
            shape = self.parameters['shape']
            scale = self.parameters['scale']
            return np.random.gamma(shape, scale, n_samples)

        else:
            raise ValueError(f"Sampling not implemented for {self.prior_type}")

    def pdf(self, x: np.ndarray) -> np.ndarray:
        """
        Compute probability density function.

        Parameters
        ----------
        x : np.ndarray
            Points at which to evaluate PDF

        Returns
        -------
        np.ndarray
            PDF values
        """
        if self.prior_type == PriorType.UNIFORM:
            low = self.parameters['low']
            high = self.parameters['high']
            return stats.uniform.pdf(x, loc=low, scale=high-low)

        elif self.prior_type == PriorType.NORMAL:
            mean = self.parameters['mean']
            std = self.parameters['std']
            return stats.norm.pdf(x, loc=mean, scale=std)

        elif self.prior_type == PriorType.BETA:
            alpha = self.parameters['alpha']
            beta = self.parameters['beta']
            return stats.beta.pdf(x, alpha, beta)

        elif self.prior_type == PriorType.GAMMA:
            shape = self.parameters['shape']
            scale = self.parameters['scale']
            return stats.gamma.pdf(x, shape, scale=scale)

        else:
            raise ValueError(f"PDF not implemented for {self.prior_type}")


@dataclass
class EvidenceUpdate:
    """
    Evidence for Bayesian belief updating.

    Attributes
    ----------
    evidence_type : EvidenceType
        Type of evidence
    observation : Any
        Observed value or data
    likelihood_function : Callable
        Function mapping parameters to likelihood of observation
    reliability : float
        Reliability score [0, 1]
    source : str
        Source of evidence
    timestamp : Optional[str]
        When evidence was collected
    """
    evidence_type: EvidenceType
    observation: Any
    likelihood_function: Callable[[np.ndarray], np.ndarray]
    reliability: float = 1.0
    source: str = ""
    timestamp: Optional[str] = None

    def compute_likelihood(self, parameter_values: np.ndarray) -> np.ndarray:
        """
        Compute likelihood of observation given parameter values.

        Parameters
        ----------
        parameter_values : np.ndarray
            Parameter values

        Returns
        -------
        np.ndarray
            Likelihood values
        """
        base_likelihood = self.likelihood_function(parameter_values)
        # Adjust for reliability
        return base_likelihood ** self.reliability


@dataclass
class BeliefState:
    """
    Current belief state (posterior distribution).

    Attributes
    ----------
    parameter_name : str
        Name of parameter
    posterior_samples : np.ndarray
        Samples from posterior distribution
    prior : GeopoliticalPrior
        Original prior
    evidence_history : List[EvidenceUpdate]
        Evidence used to update beliefs
    """
    parameter_name: str
    posterior_samples: np.ndarray
    prior: GeopoliticalPrior
    evidence_history: List[EvidenceUpdate] = field(default_factory=list)

    def mean(self) -> float:
        """Posterior mean."""
        return float(np.mean(self.posterior_samples))

    def median(self) -> float:
        """Posterior median."""
        return float(np.median(self.posterior_samples))

    def std(self) -> float:
        """Posterior standard deviation."""
        return float(np.std(self.posterior_samples))

    def quantile(self, q: float) -> float:
        """
        Posterior quantile.

        Parameters
        ----------
        q : float
            Quantile in [0, 1]

        Returns
        -------
        float
            Quantile value
        """
        return float(np.quantile(self.posterior_samples, q))

    def credible_interval(self, alpha: float = 0.05) -> Tuple[float, float]:
        """
        Compute credible interval.

        Parameters
        ----------
        alpha : float
            Significance level (default 0.05 for 95% CI)

        Returns
        -------
        Tuple[float, float]
            Lower and upper bounds
        """
        lower = self.quantile(alpha / 2)
        upper = self.quantile(1 - alpha / 2)
        return (lower, upper)

    def probability_greater_than(self, threshold: float) -> float:
        """
        Compute P(parameter > threshold | evidence).

        Parameters
        ----------
        threshold : float
            Threshold value

        Returns
        -------
        float
            Probability
        """
        return float(np.mean(self.posterior_samples > threshold))

    def probability_in_range(self, low: float, high: float) -> float:
        """
        Compute P(low < parameter < high | evidence).

        Parameters
        ----------
        low : float
            Lower bound
        high : float
            Upper bound

        Returns
        -------
        float
            Probability
        """
        return float(np.mean((self.posterior_samples > low) &
                           (self.posterior_samples < high)))


@dataclass
class CredibleInterval:
    """Credible interval for forecast."""
    lower: float
    upper: float
    alpha: float  # Significance level

    @property
    def width(self) -> float:
        """Interval width."""
        return self.upper - self.lower

    @property
    def credibility(self) -> float:
        """Credibility level (e.g., 0.95 for 95% CI)."""
        return 1 - self.alpha


@dataclass
class ForecastDistribution:
    """
    Predictive distribution for geopolitical forecast.

    Attributes
    ----------
    variable_name : str
        Name of forecasted variable
    samples : np.ndarray
        Samples from predictive distribution
    time_horizon : int
        Forecast horizon (days, months, etc.)
    conditioning_info : Dict[str, Any]
        Information conditioned on
    """
    variable_name: str
    samples: np.ndarray
    time_horizon: int
    conditioning_info: Dict[str, Any] = field(default_factory=dict)

    def point_forecast(self, method: str = 'mean') -> float:
        """
        Point forecast.

        Parameters
        ----------
        method : str
            'mean', 'median', or 'mode'

        Returns
        -------
        float
            Point forecast
        """
        if method == 'mean':
            return float(np.mean(self.samples))
        elif method == 'median':
            return float(np.median(self.samples))
        elif method == 'mode':
            # Use kernel density estimation for mode
            from scipy.stats import gaussian_kde
            kde = gaussian_kde(self.samples)
            x = np.linspace(self.samples.min(), self.samples.max(), 1000)
            return float(x[np.argmax(kde(x))])
        else:
            raise ValueError(f"Unknown method: {method}")

    def credible_interval(self, alpha: float = 0.05) -> CredibleInterval:
        """
        Compute credible interval.

        Parameters
        ----------
        alpha : float
            Significance level

        Returns
        -------
        CredibleInterval
            Credible interval
        """
        lower = float(np.quantile(self.samples, alpha / 2))
        upper = float(np.quantile(self.samples, 1 - alpha / 2))
        return CredibleInterval(lower=lower, upper=upper, alpha=alpha)

    def probability_of_event(self, condition: Callable[[np.ndarray], np.ndarray]) -> float:
        """
        Probability of event defined by condition.

        Parameters
        ----------
        condition : Callable
            Function that returns True/False for each sample

        Returns
        -------
        float
            Probability
        """
        return float(np.mean(condition(self.samples)))


class BayesianForecaster:
    """
    Bayesian forecasting engine for geopolitical analysis.

    Integrates with GeoBot 2.0 analytical framework to provide
    probabilistic forecasts with explicit uncertainty quantification.
    """

    def __init__(self):
        """Initialize Bayesian forecaster."""
        self.priors: Dict[str, GeopoliticalPrior] = {}
        self.beliefs: Dict[str, BeliefState] = {}

    def set_prior(self, prior: GeopoliticalPrior) -> None:
        """
        Set prior distribution for parameter.

        Parameters
        ----------
        prior : GeopoliticalPrior
            Prior distribution
        """
        self.priors[prior.parameter_name] = prior

    def update_belief(
        self,
        parameter_name: str,
        evidence: EvidenceUpdate,
        n_samples: int = 10000,
        method: str = 'importance_sampling'
    ) -> BeliefState:
        """
        Update beliefs using Bayes' rule.

        Parameters
        ----------
        parameter_name : str
            Parameter to update
        evidence : EvidenceUpdate
            New evidence
        n_samples : int
            Number of samples for approximation
        method : str
            'importance_sampling' or 'rejection_sampling'

        Returns
        -------
        BeliefState
            Updated belief state
        """
        if parameter_name not in self.priors:
            raise ValueError(f"No prior set for {parameter_name}")

        # Get current prior or posterior
        if parameter_name in self.beliefs:
            # Use previous posterior as new prior
            prior_samples = self.beliefs[parameter_name].posterior_samples
        else:
            # Use original prior
            prior_samples = self.priors[parameter_name].sample(n_samples)

        # Compute likelihoods
        likelihoods = evidence.compute_likelihood(prior_samples)

        if method == 'importance_sampling':
            # Importance sampling with resampling
            weights = likelihoods / np.sum(likelihoods)

            # Resample according to weights
            indices = np.random.choice(
                len(prior_samples),
                size=n_samples,
                replace=True,
                p=weights
            )
            posterior_samples = prior_samples[indices]

        elif method == 'rejection_sampling':
            # Rejection sampling
            max_likelihood = np.max(likelihoods)
            accepted = []

            for sample, likelihood in zip(prior_samples, likelihoods):
                if np.random.uniform(0, max_likelihood) < likelihood:
                    accepted.append(sample)

            if len(accepted) < 100:
                raise ValueError("Rejection sampling failed - too few accepted samples")

            posterior_samples = np.array(accepted)

        else:
            raise ValueError(f"Unknown method: {method}")

        # Create or update belief state
        if parameter_name in self.beliefs:
            belief = self.beliefs[parameter_name]
            belief.posterior_samples = posterior_samples
            belief.evidence_history.append(evidence)
        else:
            belief = BeliefState(
                parameter_name=parameter_name,
                posterior_samples=posterior_samples,
                prior=self.priors[parameter_name],
                evidence_history=[evidence]
            )

        self.beliefs[parameter_name] = belief
        return belief

    def sequential_update(
        self,
        parameter_name: str,
        evidence_sequence: List[EvidenceUpdate],
        n_samples: int = 10000
    ) -> BeliefState:
        """
        Sequential belief updating with multiple pieces of evidence.

        Parameters
        ----------
        parameter_name : str
            Parameter to update
        evidence_sequence : List[EvidenceUpdate]
            Sequence of evidence
        n_samples : int
            Number of samples

        Returns
        -------
        BeliefState
            Final belief state
        """
        for evidence in evidence_sequence:
            self.update_belief(parameter_name, evidence, n_samples)

        return self.beliefs[parameter_name]

    def forecast(
        self,
        variable_name: str,
        predictive_function: Callable[[Dict[str, float]], float],
        time_horizon: int,
        n_samples: int = 10000,
        conditioning_info: Optional[Dict[str, Any]] = None
    ) -> ForecastDistribution:
        """
        Generate probabilistic forecast.

        Parameters
        ----------
        variable_name : str
            Variable to forecast
        predictive_function : Callable
            Function mapping parameter values to prediction
        time_horizon : int
            Forecast horizon
        n_samples : int
            Number of forecast samples
        conditioning_info : Optional[Dict[str, Any]]
            Additional conditioning information

        Returns
        -------
        ForecastDistribution
            Forecast distribution
        """
        # Sample parameters from beliefs
        parameter_samples = {}
        for param_name, belief in self.beliefs.items():
            indices = np.random.choice(len(belief.posterior_samples), size=n_samples)
            parameter_samples[param_name] = belief.posterior_samples[indices]

        # Generate forecasts
        forecast_samples = np.zeros(n_samples)
        for i in range(n_samples):
            params = {name: samples[i] for name, samples in parameter_samples.items()}
            forecast_samples[i] = predictive_function(params)

        return ForecastDistribution(
            variable_name=variable_name,
            samples=forecast_samples,
            time_horizon=time_horizon,
            conditioning_info=conditioning_info or {}
        )

    def model_comparison(
        self,
        models: Dict[str, Callable],
        evidence: List[EvidenceUpdate],
        prior_model_probs: Optional[Dict[str, float]] = None
    ) -> Dict[str, float]:
        """
        Bayesian model comparison using evidence.

        Parameters
        ----------
        models : Dict[str, Callable]
            Dictionary of models (name -> likelihood function)
        evidence : List[EvidenceUpdate]
            Evidence for comparison
        prior_model_probs : Optional[Dict[str, float]]
            Prior model probabilities

        Returns
        -------
        Dict[str, float]
            Posterior model probabilities
        """
        if prior_model_probs is None:
            # Uniform prior over models
            prior_model_probs = {name: 1.0 / len(models) for name in models}

        # Compute marginal likelihoods (evidence)
        marginal_likelihoods = {}

        for model_name, model_fn in models.items():
            # This is a simplified version - full implementation would
            # integrate over parameter space
            likelihood = 1.0
            for ev in evidence:
                # Assuming model_fn can compute likelihood
                likelihood *= np.mean(ev.compute_likelihood(model_fn))

            marginal_likelihoods[model_name] = likelihood

        # Compute posterior model probabilities
        posterior_probs = {}
        total = 0.0

        for model_name in models:
            unnormalized = (prior_model_probs[model_name] *
                          marginal_likelihoods[model_name])
            posterior_probs[model_name] = unnormalized
            total += unnormalized

        # Normalize
        for model_name in posterior_probs:
            posterior_probs[model_name] /= total

        return posterior_probs

    def get_belief_summary(self, parameter_name: str) -> Dict[str, Any]:
        """
        Get summary statistics for belief state.

        Parameters
        ----------
        parameter_name : str
            Parameter name

        Returns
        -------
        Dict[str, Any]
            Summary statistics
        """
        if parameter_name not in self.beliefs:
            raise ValueError(f"No beliefs for {parameter_name}")

        belief = self.beliefs[parameter_name]
        ci_95 = belief.credible_interval(alpha=0.05)
        ci_90 = belief.credible_interval(alpha=0.10)

        return {
            'parameter': parameter_name,
            'mean': belief.mean(),
            'median': belief.median(),
            'std': belief.std(),
            '95%_CI': ci_95,
            '90%_CI': ci_90,
            'n_evidence_updates': len(belief.evidence_history),
            'evidence_types': [ev.evidence_type.value for ev in belief.evidence_history]
        }