File size: 19,121 Bytes
484e3bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 |
"""
Bayesian Forecasting Module for GeoBotv1
Provides Bayesian belief updating, prior construction, and probabilistic forecasting
for geopolitical scenarios. Integrates with GeoBot 2.0 analytical framework.
"""
from dataclasses import dataclass, field
from typing import Dict, List, Any, Optional, Callable, Tuple
from enum import Enum
import numpy as np
from scipy import stats
from scipy.optimize import minimize
class PriorType(Enum):
"""Types of prior distributions."""
UNIFORM = "uniform"
NORMAL = "normal"
BETA = "beta"
GAMMA = "gamma"
EXPERT_INFORMED = "expert_informed"
HISTORICAL = "historical"
class EvidenceType(Enum):
"""Types of evidence for belief updating."""
INTELLIGENCE_REPORT = "intelligence_report"
SATELLITE_IMAGERY = "satellite_imagery"
ECONOMIC_DATA = "economic_data"
MILITARY_MOVEMENT = "military_movement"
DIPLOMATIC_SIGNAL = "diplomatic_signal"
OPEN_SOURCE = "open_source"
@dataclass
class GeopoliticalPrior:
"""
Prior distribution for geopolitical parameter.
Attributes
----------
parameter_name : str
Name of the parameter
prior_type : PriorType
Type of prior distribution
parameters : Dict[str, float]
Distribution parameters
description : str
Description of what this parameter represents
"""
parameter_name: str
prior_type: PriorType
parameters: Dict[str, float]
description: str = ""
def sample(self, n_samples: int = 1000, random_state: Optional[int] = None) -> np.ndarray:
"""
Sample from prior distribution.
Parameters
----------
n_samples : int
Number of samples
random_state : Optional[int]
Random seed
Returns
-------
np.ndarray
Samples from prior
"""
if random_state is not None:
np.random.seed(random_state)
if self.prior_type == PriorType.UNIFORM:
low = self.parameters['low']
high = self.parameters['high']
return np.random.uniform(low, high, n_samples)
elif self.prior_type == PriorType.NORMAL:
mean = self.parameters['mean']
std = self.parameters['std']
return np.random.normal(mean, std, n_samples)
elif self.prior_type == PriorType.BETA:
alpha = self.parameters['alpha']
beta = self.parameters['beta']
return np.random.beta(alpha, beta, n_samples)
elif self.prior_type == PriorType.GAMMA:
shape = self.parameters['shape']
scale = self.parameters['scale']
return np.random.gamma(shape, scale, n_samples)
else:
raise ValueError(f"Sampling not implemented for {self.prior_type}")
def pdf(self, x: np.ndarray) -> np.ndarray:
"""
Compute probability density function.
Parameters
----------
x : np.ndarray
Points at which to evaluate PDF
Returns
-------
np.ndarray
PDF values
"""
if self.prior_type == PriorType.UNIFORM:
low = self.parameters['low']
high = self.parameters['high']
return stats.uniform.pdf(x, loc=low, scale=high-low)
elif self.prior_type == PriorType.NORMAL:
mean = self.parameters['mean']
std = self.parameters['std']
return stats.norm.pdf(x, loc=mean, scale=std)
elif self.prior_type == PriorType.BETA:
alpha = self.parameters['alpha']
beta = self.parameters['beta']
return stats.beta.pdf(x, alpha, beta)
elif self.prior_type == PriorType.GAMMA:
shape = self.parameters['shape']
scale = self.parameters['scale']
return stats.gamma.pdf(x, shape, scale=scale)
else:
raise ValueError(f"PDF not implemented for {self.prior_type}")
@dataclass
class EvidenceUpdate:
"""
Evidence for Bayesian belief updating.
Attributes
----------
evidence_type : EvidenceType
Type of evidence
observation : Any
Observed value or data
likelihood_function : Callable
Function mapping parameters to likelihood of observation
reliability : float
Reliability score [0, 1]
source : str
Source of evidence
timestamp : Optional[str]
When evidence was collected
"""
evidence_type: EvidenceType
observation: Any
likelihood_function: Callable[[np.ndarray], np.ndarray]
reliability: float = 1.0
source: str = ""
timestamp: Optional[str] = None
def compute_likelihood(self, parameter_values: np.ndarray) -> np.ndarray:
"""
Compute likelihood of observation given parameter values.
Parameters
----------
parameter_values : np.ndarray
Parameter values
Returns
-------
np.ndarray
Likelihood values
"""
base_likelihood = self.likelihood_function(parameter_values)
# Adjust for reliability
return base_likelihood ** self.reliability
@dataclass
class BeliefState:
"""
Current belief state (posterior distribution).
Attributes
----------
parameter_name : str
Name of parameter
posterior_samples : np.ndarray
Samples from posterior distribution
prior : GeopoliticalPrior
Original prior
evidence_history : List[EvidenceUpdate]
Evidence used to update beliefs
"""
parameter_name: str
posterior_samples: np.ndarray
prior: GeopoliticalPrior
evidence_history: List[EvidenceUpdate] = field(default_factory=list)
def mean(self) -> float:
"""Posterior mean."""
return float(np.mean(self.posterior_samples))
def median(self) -> float:
"""Posterior median."""
return float(np.median(self.posterior_samples))
def std(self) -> float:
"""Posterior standard deviation."""
return float(np.std(self.posterior_samples))
def quantile(self, q: float) -> float:
"""
Posterior quantile.
Parameters
----------
q : float
Quantile in [0, 1]
Returns
-------
float
Quantile value
"""
return float(np.quantile(self.posterior_samples, q))
def credible_interval(self, alpha: float = 0.05) -> Tuple[float, float]:
"""
Compute credible interval.
Parameters
----------
alpha : float
Significance level (default 0.05 for 95% CI)
Returns
-------
Tuple[float, float]
Lower and upper bounds
"""
lower = self.quantile(alpha / 2)
upper = self.quantile(1 - alpha / 2)
return (lower, upper)
def probability_greater_than(self, threshold: float) -> float:
"""
Compute P(parameter > threshold | evidence).
Parameters
----------
threshold : float
Threshold value
Returns
-------
float
Probability
"""
return float(np.mean(self.posterior_samples > threshold))
def probability_in_range(self, low: float, high: float) -> float:
"""
Compute P(low < parameter < high | evidence).
Parameters
----------
low : float
Lower bound
high : float
Upper bound
Returns
-------
float
Probability
"""
return float(np.mean((self.posterior_samples > low) &
(self.posterior_samples < high)))
@dataclass
class CredibleInterval:
"""Credible interval for forecast."""
lower: float
upper: float
alpha: float # Significance level
@property
def width(self) -> float:
"""Interval width."""
return self.upper - self.lower
@property
def credibility(self) -> float:
"""Credibility level (e.g., 0.95 for 95% CI)."""
return 1 - self.alpha
@dataclass
class ForecastDistribution:
"""
Predictive distribution for geopolitical forecast.
Attributes
----------
variable_name : str
Name of forecasted variable
samples : np.ndarray
Samples from predictive distribution
time_horizon : int
Forecast horizon (days, months, etc.)
conditioning_info : Dict[str, Any]
Information conditioned on
"""
variable_name: str
samples: np.ndarray
time_horizon: int
conditioning_info: Dict[str, Any] = field(default_factory=dict)
def point_forecast(self, method: str = 'mean') -> float:
"""
Point forecast.
Parameters
----------
method : str
'mean', 'median', or 'mode'
Returns
-------
float
Point forecast
"""
if method == 'mean':
return float(np.mean(self.samples))
elif method == 'median':
return float(np.median(self.samples))
elif method == 'mode':
# Use kernel density estimation for mode
from scipy.stats import gaussian_kde
kde = gaussian_kde(self.samples)
x = np.linspace(self.samples.min(), self.samples.max(), 1000)
return float(x[np.argmax(kde(x))])
else:
raise ValueError(f"Unknown method: {method}")
def credible_interval(self, alpha: float = 0.05) -> CredibleInterval:
"""
Compute credible interval.
Parameters
----------
alpha : float
Significance level
Returns
-------
CredibleInterval
Credible interval
"""
lower = float(np.quantile(self.samples, alpha / 2))
upper = float(np.quantile(self.samples, 1 - alpha / 2))
return CredibleInterval(lower=lower, upper=upper, alpha=alpha)
def probability_of_event(self, condition: Callable[[np.ndarray], np.ndarray]) -> float:
"""
Probability of event defined by condition.
Parameters
----------
condition : Callable
Function that returns True/False for each sample
Returns
-------
float
Probability
"""
return float(np.mean(condition(self.samples)))
class BayesianForecaster:
"""
Bayesian forecasting engine for geopolitical analysis.
Integrates with GeoBot 2.0 analytical framework to provide
probabilistic forecasts with explicit uncertainty quantification.
"""
def __init__(self):
"""Initialize Bayesian forecaster."""
self.priors: Dict[str, GeopoliticalPrior] = {}
self.beliefs: Dict[str, BeliefState] = {}
def set_prior(self, prior: GeopoliticalPrior) -> None:
"""
Set prior distribution for parameter.
Parameters
----------
prior : GeopoliticalPrior
Prior distribution
"""
self.priors[prior.parameter_name] = prior
def update_belief(
self,
parameter_name: str,
evidence: EvidenceUpdate,
n_samples: int = 10000,
method: str = 'importance_sampling'
) -> BeliefState:
"""
Update beliefs using Bayes' rule.
Parameters
----------
parameter_name : str
Parameter to update
evidence : EvidenceUpdate
New evidence
n_samples : int
Number of samples for approximation
method : str
'importance_sampling' or 'rejection_sampling'
Returns
-------
BeliefState
Updated belief state
"""
if parameter_name not in self.priors:
raise ValueError(f"No prior set for {parameter_name}")
# Get current prior or posterior
if parameter_name in self.beliefs:
# Use previous posterior as new prior
prior_samples = self.beliefs[parameter_name].posterior_samples
else:
# Use original prior
prior_samples = self.priors[parameter_name].sample(n_samples)
# Compute likelihoods
likelihoods = evidence.compute_likelihood(prior_samples)
if method == 'importance_sampling':
# Importance sampling with resampling
weights = likelihoods / np.sum(likelihoods)
# Resample according to weights
indices = np.random.choice(
len(prior_samples),
size=n_samples,
replace=True,
p=weights
)
posterior_samples = prior_samples[indices]
elif method == 'rejection_sampling':
# Rejection sampling
max_likelihood = np.max(likelihoods)
accepted = []
for sample, likelihood in zip(prior_samples, likelihoods):
if np.random.uniform(0, max_likelihood) < likelihood:
accepted.append(sample)
if len(accepted) < 100:
raise ValueError("Rejection sampling failed - too few accepted samples")
posterior_samples = np.array(accepted)
else:
raise ValueError(f"Unknown method: {method}")
# Create or update belief state
if parameter_name in self.beliefs:
belief = self.beliefs[parameter_name]
belief.posterior_samples = posterior_samples
belief.evidence_history.append(evidence)
else:
belief = BeliefState(
parameter_name=parameter_name,
posterior_samples=posterior_samples,
prior=self.priors[parameter_name],
evidence_history=[evidence]
)
self.beliefs[parameter_name] = belief
return belief
def sequential_update(
self,
parameter_name: str,
evidence_sequence: List[EvidenceUpdate],
n_samples: int = 10000
) -> BeliefState:
"""
Sequential belief updating with multiple pieces of evidence.
Parameters
----------
parameter_name : str
Parameter to update
evidence_sequence : List[EvidenceUpdate]
Sequence of evidence
n_samples : int
Number of samples
Returns
-------
BeliefState
Final belief state
"""
for evidence in evidence_sequence:
self.update_belief(parameter_name, evidence, n_samples)
return self.beliefs[parameter_name]
def forecast(
self,
variable_name: str,
predictive_function: Callable[[Dict[str, float]], float],
time_horizon: int,
n_samples: int = 10000,
conditioning_info: Optional[Dict[str, Any]] = None
) -> ForecastDistribution:
"""
Generate probabilistic forecast.
Parameters
----------
variable_name : str
Variable to forecast
predictive_function : Callable
Function mapping parameter values to prediction
time_horizon : int
Forecast horizon
n_samples : int
Number of forecast samples
conditioning_info : Optional[Dict[str, Any]]
Additional conditioning information
Returns
-------
ForecastDistribution
Forecast distribution
"""
# Sample parameters from beliefs
parameter_samples = {}
for param_name, belief in self.beliefs.items():
indices = np.random.choice(len(belief.posterior_samples), size=n_samples)
parameter_samples[param_name] = belief.posterior_samples[indices]
# Generate forecasts
forecast_samples = np.zeros(n_samples)
for i in range(n_samples):
params = {name: samples[i] for name, samples in parameter_samples.items()}
forecast_samples[i] = predictive_function(params)
return ForecastDistribution(
variable_name=variable_name,
samples=forecast_samples,
time_horizon=time_horizon,
conditioning_info=conditioning_info or {}
)
def model_comparison(
self,
models: Dict[str, Callable],
evidence: List[EvidenceUpdate],
prior_model_probs: Optional[Dict[str, float]] = None
) -> Dict[str, float]:
"""
Bayesian model comparison using evidence.
Parameters
----------
models : Dict[str, Callable]
Dictionary of models (name -> likelihood function)
evidence : List[EvidenceUpdate]
Evidence for comparison
prior_model_probs : Optional[Dict[str, float]]
Prior model probabilities
Returns
-------
Dict[str, float]
Posterior model probabilities
"""
if prior_model_probs is None:
# Uniform prior over models
prior_model_probs = {name: 1.0 / len(models) for name in models}
# Compute marginal likelihoods (evidence)
marginal_likelihoods = {}
for model_name, model_fn in models.items():
# This is a simplified version - full implementation would
# integrate over parameter space
likelihood = 1.0
for ev in evidence:
# Assuming model_fn can compute likelihood
likelihood *= np.mean(ev.compute_likelihood(model_fn))
marginal_likelihoods[model_name] = likelihood
# Compute posterior model probabilities
posterior_probs = {}
total = 0.0
for model_name in models:
unnormalized = (prior_model_probs[model_name] *
marginal_likelihoods[model_name])
posterior_probs[model_name] = unnormalized
total += unnormalized
# Normalize
for model_name in posterior_probs:
posterior_probs[model_name] /= total
return posterior_probs
def get_belief_summary(self, parameter_name: str) -> Dict[str, Any]:
"""
Get summary statistics for belief state.
Parameters
----------
parameter_name : str
Parameter name
Returns
-------
Dict[str, Any]
Summary statistics
"""
if parameter_name not in self.beliefs:
raise ValueError(f"No beliefs for {parameter_name}")
belief = self.beliefs[parameter_name]
ci_95 = belief.credible_interval(alpha=0.05)
ci_90 = belief.credible_interval(alpha=0.10)
return {
'parameter': parameter_name,
'mean': belief.mean(),
'median': belief.median(),
'std': belief.std(),
'95%_CI': ci_95,
'90%_CI': ci_90,
'n_evidence_updates': len(belief.evidence_history),
'evidence_types': [ev.evidence_type.value for ev in belief.evidence_history]
}
|