File size: 19,156 Bytes
484e3bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 |
"""
Structural Causal Models for GeoBotv1
Implements Structural Causal Models (SCMs) for geopolitical analysis,
intervention simulation, and counterfactual reasoning. Integrates with
GeoBot 2.0 analytical framework.
"""
from dataclasses import dataclass, field
from typing import Dict, List, Any, Optional, Callable, Set, Tuple
from enum import Enum
import numpy as np
import networkx as nx
class IdentificationStrategy(Enum):
"""Strategies for identifying causal effects."""
BACKDOOR_ADJUSTMENT = "backdoor"
FRONTDOOR_ADJUSTMENT = "frontdoor"
INSTRUMENTAL_VARIABLES = "iv"
DO_CALCULUS = "do_calculus"
STRUCTURAL_EQUATIONS = "structural"
@dataclass
class StructuralEquation:
"""
Structural equation for a variable in SCM.
X := f(Pa_X, U_X)
Attributes
----------
variable : str
Variable name
parents : List[str]
Parent variables in causal graph
function : Callable
Structural function f
noise_dist : Callable
Distribution of exogenous noise U_X
description : str
Description of equation
"""
variable: str
parents: List[str]
function: Callable[[Dict[str, float]], float]
noise_dist: Callable[[int], np.ndarray]
description: str = ""
def evaluate(self, parent_values: Dict[str, float], noise: Optional[float] = None) -> float:
"""
Evaluate structural equation.
Parameters
----------
parent_values : Dict[str, float]
Values of parent variables
noise : Optional[float]
Noise value (if None, sample from distribution)
Returns
-------
float
Value of variable
"""
if noise is None:
noise = self.noise_dist(1)[0]
return self.function(parent_values) + noise
@dataclass
class Intervention:
"""
Causal intervention do(X = x).
Attributes
----------
variable : str
Variable being intervened on
value : float
Value set by intervention
description : str
Description of intervention
"""
variable: str
value: float
description: str = ""
def __repr__(self) -> str:
return f"do({self.variable} = {self.value})"
@dataclass
class Counterfactual:
"""
Counterfactual query.
"What would Y be if we had done X = x, given that we observed Z = z?"
Attributes
----------
query_variable : str
Variable being queried
intervention : Intervention
Counterfactual intervention
observations : Dict[str, float]
Observed values
"""
query_variable: str
intervention: Intervention
observations: Dict[str, float] = field(default_factory=dict)
def __repr__(self) -> str:
obs_str = ", ".join([f"{k}={v}" for k, v in self.observations.items()])
return f"{self.query_variable}_{{{self.intervention}}} | {obs_str}"
@dataclass
class CausalEffect:
"""
Estimated causal effect.
Attributes
----------
treatment : str
Treatment variable
outcome : str
Outcome variable
effect : float
Estimated average causal effect
std_error : Optional[float]
Standard error of estimate
confidence_interval : Optional[Tuple[float, float]]
Confidence interval
identification_strategy : IdentificationStrategy
How effect was identified
"""
treatment: str
outcome: str
effect: float
std_error: Optional[float] = None
confidence_interval: Optional[Tuple[float, float]] = None
identification_strategy: Optional[IdentificationStrategy] = None
def __repr__(self) -> str:
ci_str = ""
if self.confidence_interval:
ci_str = f", 95% CI: {self.confidence_interval}"
return f"ACE({self.treatment} → {self.outcome}) = {self.effect:.3f}{ci_str}"
class StructuralCausalModel:
"""
Structural Causal Model for geopolitical analysis.
An SCM consists of:
1. Causal graph G (DAG)
2. Structural equations for each variable
3. Exogenous noise distributions
Enables:
- Intervention simulation (do-operator)
- Counterfactual reasoning
- Causal effect identification
"""
def __init__(self, name: str = "GeopoliticalSCM"):
"""
Initialize SCM.
Parameters
----------
name : str
Name of SCM
"""
self.name = name
self.graph = nx.DiGraph()
self.equations: Dict[str, StructuralEquation] = {}
self.exogenous_variables: Set[str] = set()
def add_equation(self, equation: StructuralEquation) -> None:
"""
Add structural equation to model.
Parameters
----------
equation : StructuralEquation
Structural equation
"""
self.equations[equation.variable] = equation
# Add to graph
self.graph.add_node(equation.variable)
for parent in equation.parents:
self.graph.add_edge(parent, equation.variable)
def add_exogenous(self, variable: str, distribution: Callable[[int], np.ndarray]) -> None:
"""
Add exogenous variable.
Parameters
----------
variable : str
Variable name
distribution : Callable
Distribution for sampling
"""
self.exogenous_variables.add(variable)
self.graph.add_node(variable)
def topological_order(self) -> List[str]:
"""
Get topological ordering of variables.
Returns
-------
List[str]
Topologically sorted variables
"""
try:
return list(nx.topological_sort(self.graph))
except nx.NetworkXError:
raise ValueError("Graph contains cycles - not a valid DAG")
def simulate(
self,
n_samples: int = 1000,
interventions: Optional[List[Intervention]] = None,
random_state: Optional[int] = None
) -> Dict[str, np.ndarray]:
"""
Simulate from SCM.
Parameters
----------
n_samples : int
Number of samples
interventions : Optional[List[Intervention]]
Interventions to apply
random_state : Optional[int]
Random seed
Returns
-------
Dict[str, np.ndarray]
Simulated data for each variable
"""
if random_state is not None:
np.random.seed(random_state)
# Intervention variables
intervention_dict = {}
if interventions:
intervention_dict = {iv.variable: iv.value for iv in interventions}
# Initialize data
data = {}
# Topological order
order = self.topological_order()
# Simulate each variable in order
for var in order:
if var in intervention_dict:
# Variable is intervened on - set to intervention value
data[var] = np.full(n_samples, intervention_dict[var])
elif var in self.exogenous_variables:
# Exogenous variable - sample from distribution
# For now, assume standard normal if not specified
data[var] = np.random.randn(n_samples)
elif var in self.equations:
# Endogenous variable - evaluate structural equation
eq = self.equations[var]
values = np.zeros(n_samples)
for i in range(n_samples):
parent_vals = {p: data[p][i] for p in eq.parents}
values[i] = eq.evaluate(parent_vals)
data[var] = values
else:
raise ValueError(f"No equation for variable {var}")
return data
def intervene(
self,
interventions: List[Intervention],
n_samples: int = 1000,
random_state: Optional[int] = None
) -> Dict[str, np.ndarray]:
"""
Simulate interventions using do-operator.
Parameters
----------
interventions : List[Intervention]
Interventions to apply
n_samples : int
Number of samples
random_state : Optional[int]
Random seed
Returns
-------
Dict[str, np.ndarray]
Post-intervention data
"""
return self.simulate(n_samples, interventions, random_state)
def estimate_causal_effect(
self,
treatment: str,
outcome: str,
n_samples: int = 10000,
treatment_values: Optional[List[float]] = None
) -> CausalEffect:
"""
Estimate average causal effect of treatment on outcome.
Parameters
----------
treatment : str
Treatment variable
outcome : str
Outcome variable
n_samples : int
Number of simulation samples
treatment_values : Optional[List[float]]
Treatment values to compare (default [0, 1])
Returns
-------
CausalEffect
Estimated causal effect
"""
if treatment_values is None:
treatment_values = [0.0, 1.0]
# Simulate under different treatment values
outcomes = []
for t_val in treatment_values:
intervention = Intervention(variable=treatment, value=t_val)
data = self.intervene([intervention], n_samples)
outcomes.append(np.mean(data[outcome]))
# Average causal effect
ace = outcomes[1] - outcomes[0]
# Bootstrap for standard error
bootstrap_effects = []
for _ in range(100):
boot_outcomes = []
for t_val in treatment_values:
intervention = Intervention(variable=treatment, value=t_val)
data = self.intervene([intervention], n_samples=1000)
boot_outcomes.append(np.mean(data[outcome]))
bootstrap_effects.append(boot_outcomes[1] - boot_outcomes[0])
std_error = np.std(bootstrap_effects)
ci = (
ace - 1.96 * std_error,
ace + 1.96 * std_error
)
return CausalEffect(
treatment=treatment,
outcome=outcome,
effect=ace,
std_error=std_error,
confidence_interval=ci,
identification_strategy=IdentificationStrategy.STRUCTURAL_EQUATIONS
)
def counterfactual_query(
self,
query: Counterfactual,
n_samples: int = 10000
) -> Dict[str, Any]:
"""
Answer counterfactual query.
Three-step process:
1. Abduction: Infer exogenous variables from observations
2. Action: Apply intervention
3. Prediction: Compute outcome
Parameters
----------
query : Counterfactual
Counterfactual query
n_samples : int
Number of samples for approximation
Returns
-------
Dict[str, Any]
Counterfactual results
"""
# Simplified counterfactual reasoning
# Full implementation would do proper abduction step
# For now, simulate with intervention
data = self.intervene([query.intervention], n_samples)
return {
'query': str(query),
'expected_value': float(np.mean(data[query.query_variable])),
'std': float(np.std(data[query.query_variable])),
'median': float(np.median(data[query.query_variable])),
'quantiles': {
'5%': float(np.quantile(data[query.query_variable], 0.05)),
'25%': float(np.quantile(data[query.query_variable], 0.25)),
'75%': float(np.quantile(data[query.query_variable], 0.75)),
'95%': float(np.quantile(data[query.query_variable], 0.95)),
}
}
def find_backdoor_paths(self, treatment: str, outcome: str) -> List[List[str]]:
"""
Find backdoor paths from treatment to outcome.
Parameters
----------
treatment : str
Treatment variable
outcome : str
Outcome variable
Returns
-------
List[List[str]]
List of backdoor paths
"""
# Create undirected version of graph
undirected = self.graph.to_undirected()
# Find all paths
try:
all_paths = list(nx.all_simple_paths(undirected, treatment, outcome))
except nx.NodeNotFound:
return []
# Filter for backdoor paths (paths that go through parent of treatment)
backdoor_paths = []
treatment_parents = set(self.graph.predecessors(treatment))
for path in all_paths:
# Check if path starts with an edge into treatment
if len(path) > 1 and path[1] in treatment_parents:
backdoor_paths.append(path)
return backdoor_paths
def find_backdoor_adjustment_set(
self,
treatment: str,
outcome: str
) -> Optional[Set[str]]:
"""
Find minimal backdoor adjustment set.
Parameters
----------
treatment : str
Treatment variable
outcome : str
Outcome variable
Returns
-------
Optional[Set[str]]
Backdoor adjustment set, or None if no valid set exists
"""
backdoor_paths = self.find_backdoor_paths(treatment, outcome)
if not backdoor_paths:
return set() # No backdoor paths, empty set suffices
# Find minimal set that blocks all backdoor paths
# This is simplified - full implementation would use
# proper d-separation testing
# Collect all variables in backdoor paths
candidates = set()
for path in backdoor_paths:
candidates.update(path[1:-1]) # Exclude treatment and outcome
# Remove descendants of treatment (would create bias)
treatment_descendants = nx.descendants(self.graph, treatment)
candidates -= treatment_descendants
return candidates
def plot_graph(self, filename: Optional[str] = None) -> None:
"""
Plot causal graph.
Parameters
----------
filename : Optional[str]
File to save plot to
"""
try:
import matplotlib.pyplot as plt
pos = nx.spring_layout(self.graph)
nx.draw(
self.graph,
pos,
with_labels=True,
node_color='lightblue',
node_size=1500,
font_size=10,
font_weight='bold',
arrows=True,
arrowsize=20
)
if filename:
plt.savefig(filename)
else:
plt.show()
except ImportError:
print("matplotlib not available for plotting")
def estimate_causal_effect(
scm: StructuralCausalModel,
treatment: str,
outcome: str,
adjustment_set: Optional[Set[str]] = None,
n_samples: int = 10000
) -> CausalEffect:
"""
Estimate causal effect using appropriate identification strategy.
Parameters
----------
scm : StructuralCausalModel
Structural causal model
treatment : str
Treatment variable
outcome : str
Outcome variable
adjustment_set : Optional[Set[str]]
Variables to adjust for (if None, use backdoor criterion)
n_samples : int
Number of samples
Returns
-------
CausalEffect
Estimated causal effect
"""
# Find adjustment set if not provided
if adjustment_set is None:
adjustment_set = scm.find_backdoor_adjustment_set(treatment, outcome)
if adjustment_set is None:
# Try frontdoor or IV
raise ValueError("Cannot identify causal effect - no valid adjustment set")
# Use structural equations for direct estimation
return scm.estimate_causal_effect(treatment, outcome, n_samples)
# ============================================================================
# Predefined SCMs for Geopolitical Analysis
# ============================================================================
def create_sanctions_scm() -> StructuralCausalModel:
"""
Create SCM for sanctions analysis.
Variables:
- sanctions: Binary sanctions imposed
- trade_disruption: Trade flow disruption
- economic_growth: Economic growth rate
- regime_stability: Regime stability score
Returns
-------
StructuralCausalModel
Sanctions SCM
"""
scm = StructuralCausalModel(name="SanctionsSCM")
# Exogenous noise (simplified as standard normal)
noise_dist = lambda n: np.random.randn(n) * 0.1
# Trade disruption = f(sanctions) + noise
scm.add_equation(StructuralEquation(
variable="trade_disruption",
parents=["sanctions"],
function=lambda p: 0.7 * p["sanctions"],
noise_dist=noise_dist,
description="Sanctions directly reduce trade"
))
# Economic growth = f(trade_disruption) + noise
scm.add_equation(StructuralEquation(
variable="economic_growth",
parents=["trade_disruption"],
function=lambda p: 0.05 - 0.4 * p["trade_disruption"],
noise_dist=noise_dist,
description="Trade disruption reduces growth"
))
# Regime stability = f(economic_growth) + noise
scm.add_equation(StructuralEquation(
variable="regime_stability",
parents=["economic_growth"],
function=lambda p: 0.7 + 0.5 * p["economic_growth"],
noise_dist=noise_dist,
description="Economic growth affects regime stability"
))
return scm
def create_conflict_escalation_scm() -> StructuralCausalModel:
"""
Create SCM for conflict escalation.
Variables:
- military_buildup: Military force buildup
- diplomatic_tension: Diplomatic relations tension
- conflict_risk: Risk of armed conflict
Returns
-------
StructuralCausalModel
Conflict escalation SCM
"""
scm = StructuralCausalModel(name="ConflictEscalationSCM")
noise_dist = lambda n: np.random.randn(n) * 0.05
# Diplomatic tension = f(military_buildup) + noise
scm.add_equation(StructuralEquation(
variable="diplomatic_tension",
parents=["military_buildup"],
function=lambda p: 0.3 + 0.6 * p["military_buildup"],
noise_dist=noise_dist,
description="Military buildup increases diplomatic tension"
))
# Conflict risk = f(military_buildup, diplomatic_tension) + noise
scm.add_equation(StructuralEquation(
variable="conflict_risk",
parents=["military_buildup", "diplomatic_tension"],
function=lambda p: 0.1 + 0.4 * p["military_buildup"] + 0.3 * p["diplomatic_tension"],
noise_dist=noise_dist,
description="Both military buildup and tension increase conflict risk"
))
return scm
|