File size: 7,875 Bytes
484e3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
"""
Scenario representation and management for geopolitical modeling.
"""

import numpy as np
from typing import Dict, List, Optional, Any
from dataclasses import dataclass, field
from datetime import datetime


@dataclass
class Scenario:
    """
    Represents a geopolitical scenario with multiple features and metadata.

    Attributes
    ----------
    name : str
        Name or identifier for the scenario
    features : Dict[str, np.ndarray]
        Dictionary of feature names to values
    timestamp : datetime
        Timestamp of the scenario
    metadata : Dict[str, Any]
        Additional metadata
    probability : float
        Probability or weight of this scenario (for ensembles)
    """
    name: str
    features: Dict[str, np.ndarray]
    timestamp: datetime = field(default_factory=datetime.now)
    metadata: Dict[str, Any] = field(default_factory=dict)
    probability: float = 1.0

    def get_feature_vector(self, feature_names: Optional[List[str]] = None) -> np.ndarray:
        """
        Get features as a vector.

        Parameters
        ----------
        feature_names : List[str], optional
            List of feature names to include (if None, use all)

        Returns
        -------
        np.ndarray
            Feature vector
        """
        if feature_names is None:
            feature_names = list(self.features.keys())

        vectors = [self.features[name].flatten() for name in feature_names if name in self.features]
        return np.concatenate(vectors)

    def get_feature_matrix(self) -> np.ndarray:
        """
        Get all features as a matrix.

        Returns
        -------
        np.ndarray
            Feature matrix (n_features, ...)
        """
        return np.array([v for v in self.features.values()])

    def add_feature(self, name: str, values: np.ndarray) -> None:
        """
        Add a new feature to the scenario.

        Parameters
        ----------
        name : str
            Feature name
        values : np.ndarray
            Feature values
        """
        self.features[name] = values

    def remove_feature(self, name: str) -> None:
        """
        Remove a feature from the scenario.

        Parameters
        ----------
        name : str
            Feature name to remove
        """
        if name in self.features:
            del self.features[name]

    def clone(self) -> 'Scenario':
        """
        Create a deep copy of the scenario.

        Returns
        -------
        Scenario
            Cloned scenario
        """
        return Scenario(
            name=self.name,
            features={k: v.copy() for k, v in self.features.items()},
            timestamp=self.timestamp,
            metadata=self.metadata.copy(),
            probability=self.probability
        )


class ScenarioDistribution:
    """
    Represents a distribution over multiple scenarios.

    This is useful for Monte Carlo simulations, ensemble forecasting,
    and probabilistic reasoning.
    """

    def __init__(self, scenarios: Optional[List[Scenario]] = None):
        """
        Initialize scenario distribution.

        Parameters
        ----------
        scenarios : List[Scenario], optional
            Initial list of scenarios
        """
        self.scenarios: List[Scenario] = scenarios if scenarios is not None else []

    def add_scenario(self, scenario: Scenario) -> None:
        """
        Add a scenario to the distribution.

        Parameters
        ----------
        scenario : Scenario
            Scenario to add
        """
        self.scenarios.append(scenario)

    def get_probabilities(self) -> np.ndarray:
        """
        Get probabilities of all scenarios.

        Returns
        -------
        np.ndarray
            Array of probabilities
        """
        probs = np.array([s.probability for s in self.scenarios])
        # Normalize
        return probs / probs.sum()

    def normalize_probabilities(self) -> None:
        """
        Normalize scenario probabilities to sum to 1.
        """
        total_prob = sum(s.probability for s in self.scenarios)
        for scenario in self.scenarios:
            scenario.probability /= total_prob

    def get_feature_samples(self, feature_names: Optional[List[str]] = None) -> np.ndarray:
        """
        Get feature samples from all scenarios.

        Parameters
        ----------
        feature_names : List[str], optional
            List of feature names to include

        Returns
        -------
        np.ndarray
            Feature samples (n_scenarios, n_features)
        """
        samples = [s.get_feature_vector(feature_names) for s in self.scenarios]
        return np.array(samples)

    def get_weighted_mean(self, feature_names: Optional[List[str]] = None) -> np.ndarray:
        """
        Compute weighted mean of features.

        Parameters
        ----------
        feature_names : List[str], optional
            List of feature names to include

        Returns
        -------
        np.ndarray
            Weighted mean feature vector
        """
        samples = self.get_feature_samples(feature_names)
        probs = self.get_probabilities()
        return np.average(samples, axis=0, weights=probs)

    def get_variance(self, feature_names: Optional[List[str]] = None) -> np.ndarray:
        """
        Compute variance of features.

        Parameters
        ----------
        feature_names : List[str], optional
            List of feature names to include

        Returns
        -------
        np.ndarray
            Variance of features
        """
        samples = self.get_feature_samples(feature_names)
        probs = self.get_probabilities()
        mean = self.get_weighted_mean(feature_names)

        variance = np.average((samples - mean) ** 2, axis=0, weights=probs)
        return variance

    def sample(self, n_samples: int = 1, replace: bool = True) -> List[Scenario]:
        """
        Sample scenarios from the distribution.

        Parameters
        ----------
        n_samples : int
            Number of samples to draw
        replace : bool
            Whether to sample with replacement

        Returns
        -------
        List[Scenario]
            Sampled scenarios
        """
        probs = self.get_probabilities()
        indices = np.random.choice(
            len(self.scenarios),
            size=n_samples,
            replace=replace,
            p=probs
        )
        return [self.scenarios[i] for i in indices]

    def filter_by_probability(self, threshold: float) -> 'ScenarioDistribution':
        """
        Filter scenarios by probability threshold.

        Parameters
        ----------
        threshold : float
            Minimum probability threshold

        Returns
        -------
        ScenarioDistribution
            New distribution with filtered scenarios
        """
        filtered_scenarios = [s for s in self.scenarios if s.probability >= threshold]
        return ScenarioDistribution(filtered_scenarios)

    def get_top_k(self, k: int) -> 'ScenarioDistribution':
        """
        Get top k scenarios by probability.

        Parameters
        ----------
        k : int
            Number of scenarios to return

        Returns
        -------
        ScenarioDistribution
            Distribution with top k scenarios
        """
        sorted_scenarios = sorted(self.scenarios, key=lambda s: s.probability, reverse=True)
        return ScenarioDistribution(sorted_scenarios[:k])

    def __len__(self) -> int:
        """Return number of scenarios."""
        return len(self.scenarios)

    def __getitem__(self, idx: int) -> Scenario:
        """Get scenario by index."""
        return self.scenarios[idx]

    def __iter__(self):
        """Iterate over scenarios."""
        return iter(self.scenarios)