File size: 14,650 Bytes
484e3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
"""
PDF Reading and Processing Module

Comprehensive PDF ingestion capabilities for geopolitical intelligence documents,
reports, briefings, and analysis.

Supports:
- Text extraction from PDFs
- Table extraction
- Metadata extraction
- Multi-format PDF handling
- Batch processing
"""

import os
from typing import Dict, List, Optional, Any, Tuple
from pathlib import Path
import re


class PDFReader:
    """
    Read and extract text from PDF documents.

    Supports multiple PDF libraries for robust extraction.
    """

    def __init__(self, method: str = 'auto'):
        """
        Initialize PDF reader.

        Parameters
        ----------
        method : str
            Extraction method ('pypdf', 'pdfplumber', 'pdfminer', 'auto')
        """
        self.method = method
        self._check_dependencies()

    def _check_dependencies(self) -> None:
        """Check which PDF libraries are available."""
        self.has_pypdf = False
        self.has_pdfplumber = False
        self.has_pdfminer = False

        try:
            import pypdf
            self.has_pypdf = True
        except ImportError:
            pass

        try:
            import pdfplumber
            self.has_pdfplumber = True
        except ImportError:
            pass

        try:
            from pdfminer.high_level import extract_text as pdfminer_extract
            self.has_pdfminer = True
        except ImportError:
            pass

        if not any([self.has_pypdf, self.has_pdfplumber, self.has_pdfminer]):
            print("Warning: No PDF libraries available. Please install pypdf, pdfplumber, or pdfminer.six")

    def read_pdf(self, pdf_path: str) -> Dict[str, Any]:
        """
        Read PDF and extract all information.

        Parameters
        ----------
        pdf_path : str
            Path to PDF file

        Returns
        -------
        dict
            Extracted information including text, metadata, pages
        """
        if not os.path.exists(pdf_path):
            raise FileNotFoundError(f"PDF not found: {pdf_path}")

        method = self.method
        if method == 'auto':
            # Choose best available method
            if self.has_pdfplumber:
                method = 'pdfplumber'
            elif self.has_pypdf:
                method = 'pypdf'
            elif self.has_pdfminer:
                method = 'pdfminer'
            else:
                raise ImportError("No PDF library available")

        if method == 'pypdf':
            return self._read_with_pypdf(pdf_path)
        elif method == 'pdfplumber':
            return self._read_with_pdfplumber(pdf_path)
        elif method == 'pdfminer':
            return self._read_with_pdfminer(pdf_path)
        else:
            raise ValueError(f"Unknown method: {method}")

    def _read_with_pypdf(self, pdf_path: str) -> Dict[str, Any]:
        """Read PDF using pypdf."""
        import pypdf

        result = {
            'text': '',
            'pages': [],
            'metadata': {},
            'num_pages': 0
        }

        with open(pdf_path, 'rb') as file:
            reader = pypdf.PdfReader(file)
            result['num_pages'] = len(reader.pages)

            # Extract metadata
            if reader.metadata:
                result['metadata'] = {
                    'title': reader.metadata.get('/Title', ''),
                    'author': reader.metadata.get('/Author', ''),
                    'subject': reader.metadata.get('/Subject', ''),
                    'creator': reader.metadata.get('/Creator', ''),
                }

            # Extract text from each page
            for page_num, page in enumerate(reader.pages):
                page_text = page.extract_text()
                result['pages'].append({
                    'page_number': page_num + 1,
                    'text': page_text
                })
                result['text'] += page_text + '\n'

        return result

    def _read_with_pdfplumber(self, pdf_path: str) -> Dict[str, Any]:
        """Read PDF using pdfplumber (best for tables)."""
        import pdfplumber

        result = {
            'text': '',
            'pages': [],
            'tables': [],
            'metadata': {},
            'num_pages': 0
        }

        with pdfplumber.open(pdf_path) as pdf:
            result['num_pages'] = len(pdf.pages)
            result['metadata'] = pdf.metadata

            for page_num, page in enumerate(pdf.pages):
                page_text = page.extract_text()
                page_tables = page.extract_tables()

                result['pages'].append({
                    'page_number': page_num + 1,
                    'text': page_text,
                    'tables': page_tables
                })

                result['text'] += page_text + '\n' if page_text else ''

                if page_tables:
                    result['tables'].extend([{
                        'page': page_num + 1,
                        'data': table
                    } for table in page_tables])

        return result

    def _read_with_pdfminer(self, pdf_path: str) -> Dict[str, Any]:
        """Read PDF using pdfminer."""
        from pdfminer.high_level import extract_text, extract_pages
        from pdfminer.layout import LTTextContainer

        result = {
            'text': '',
            'pages': [],
            'metadata': {},
            'num_pages': 0
        }

        # Extract all text
        result['text'] = extract_text(pdf_path)

        # Extract page by page
        pages = list(extract_pages(pdf_path))
        result['num_pages'] = len(pages)

        for page_num, page_layout in enumerate(pages):
            page_text = ''
            for element in page_layout:
                if isinstance(element, LTTextContainer):
                    page_text += element.get_text()

            result['pages'].append({
                'page_number': page_num + 1,
                'text': page_text
            })

        return result

    def extract_text(self, pdf_path: str) -> str:
        """
        Extract text from PDF (simple interface).

        Parameters
        ----------
        pdf_path : str
            Path to PDF

        Returns
        -------
        str
            Extracted text
        """
        result = self.read_pdf(pdf_path)
        return result['text']

    def extract_tables(self, pdf_path: str) -> List[List[List[str]]]:
        """
        Extract tables from PDF.

        Parameters
        ----------
        pdf_path : str
            Path to PDF

        Returns
        -------
        list
            List of tables
        """
        if not self.has_pdfplumber:
            print("Warning: pdfplumber required for table extraction")
            return []

        result = self._read_with_pdfplumber(pdf_path)
        return [table['data'] for table in result.get('tables', [])]


class PDFProcessor:
    """
    Process and analyze PDF documents for geopolitical intelligence.

    Provides high-level processing capabilities including:
    - Entity extraction
    - Topic extraction
    - Sentiment analysis
    - Key phrase extraction
    """

    def __init__(self, pdf_reader: Optional[PDFReader] = None):
        """
        Initialize PDF processor.

        Parameters
        ----------
        pdf_reader : PDFReader, optional
            PDF reader to use
        """
        self.reader = pdf_reader or PDFReader()

    def process_document(self, pdf_path: str) -> Dict[str, Any]:
        """
        Process PDF document and extract intelligence.

        Parameters
        ----------
        pdf_path : str
            Path to PDF

        Returns
        -------
        dict
            Processed document with analysis
        """
        # Extract content
        content = self.reader.read_pdf(pdf_path)

        # Basic processing
        processed = {
            'file_path': pdf_path,
            'file_name': Path(pdf_path).name,
            'text': content['text'],
            'num_pages': content['num_pages'],
            'metadata': content.get('metadata', {}),
            'word_count': len(content['text'].split()),
            'char_count': len(content['text']),
        }

        # Extract key information
        processed['entities'] = self._extract_entities(content['text'])
        processed['keywords'] = self._extract_keywords(content['text'])
        processed['summary'] = self._generate_summary(content['text'])

        return processed

    def _extract_entities(self, text: str) -> Dict[str, List[str]]:
        """
        Extract named entities (countries, organizations, people).

        Parameters
        ----------
        text : str
            Text to analyze

        Returns
        -------
        dict
            Extracted entities by type
        """
        entities = {
            'countries': [],
            'organizations': [],
            'people': [],
            'locations': []
        }

        # Simple pattern-based extraction (can be enhanced with NER)
        # Common country names
        countries = ['United States', 'China', 'Russia', 'Iran', 'North Korea',
                    'India', 'Pakistan', 'Israel', 'Saudi Arabia', 'Turkey',
                    'France', 'Germany', 'United Kingdom', 'Japan', 'South Korea']

        for country in countries:
            if country in text:
                entities['countries'].append(country)

        # Organizations (simple patterns)
        org_patterns = [r'\b([A-Z][A-Za-z]+(?:\s+[A-Z][A-Za-z]+)*)\s+(?:Organization|Agency|Ministry|Department|Council)\b']
        for pattern in org_patterns:
            matches = re.findall(pattern, text)
            entities['organizations'].extend(matches)

        return entities

    def _extract_keywords(self, text: str, n_keywords: int = 10) -> List[Tuple[str, float]]:
        """
        Extract keywords from text.

        Parameters
        ----------
        text : str
            Text to analyze
        n_keywords : int
            Number of keywords to extract

        Returns
        -------
        list
            List of (keyword, score) tuples
        """
        # Simple frequency-based extraction
        words = text.lower().split()

        # Remove common words
        stopwords = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at',
                    'to', 'for', 'of', 'with', 'by', 'from', 'as', 'is', 'was',
                    'are', 'were', 'been', 'be', 'have', 'has', 'had', 'do',
                    'does', 'did', 'will', 'would', 'should', 'could', 'may',
                    'might', 'can', 'this', 'that', 'these', 'those'}

        words = [w for w in words if w not in stopwords and len(w) > 3]

        # Count frequencies
        from collections import Counter
        word_freq = Counter(words)

        # Return top keywords
        return word_freq.most_common(n_keywords)

    def _generate_summary(self, text: str, num_sentences: int = 3) -> str:
        """
        Generate simple extractive summary.

        Parameters
        ----------
        text : str
            Text to summarize
        num_sentences : int
            Number of sentences in summary

        Returns
        -------
        str
            Summary
        """
        # Split into sentences
        sentences = re.split(r'[.!?]+', text)
        sentences = [s.strip() for s in sentences if len(s.strip()) > 20]

        # Take first few sentences as summary (simple approach)
        summary_sentences = sentences[:num_sentences]

        return '. '.join(summary_sentences) + '.'

    def batch_process(self, pdf_directory: str, pattern: str = '*.pdf') -> List[Dict[str, Any]]:
        """
        Process multiple PDFs in a directory.

        Parameters
        ----------
        pdf_directory : str
            Directory containing PDFs
        pattern : str
            File pattern to match

        Returns
        -------
        list
            List of processed documents
        """
        pdf_dir = Path(pdf_directory)
        pdf_files = list(pdf_dir.glob(pattern))

        results = []
        for pdf_file in pdf_files:
            try:
                processed = self.process_document(str(pdf_file))
                results.append(processed)
            except Exception as e:
                print(f"Error processing {pdf_file}: {e}")

        return results

    def extract_intelligence(self, pdf_path: str) -> Dict[str, Any]:
        """
        Extract geopolitical intelligence from PDF.

        Parameters
        ----------
        pdf_path : str
            Path to PDF

        Returns
        -------
        dict
            Intelligence summary
        """
        processed = self.process_document(pdf_path)

        # Analyze for geopolitical indicators
        text = processed['text'].lower()

        indicators = {
            'conflict_indicators': self._detect_conflict_indicators(text),
            'risk_level': self._assess_risk_level(text),
            'mentioned_countries': processed['entities'].get('countries', []),
            'key_topics': [kw[0] for kw in processed['keywords'][:5]],
            'document_type': self._classify_document_type(text)
        }

        return {**processed, 'intelligence': indicators}

    def _detect_conflict_indicators(self, text: str) -> List[str]:
        """Detect conflict-related keywords."""
        conflict_keywords = ['war', 'conflict', 'military', 'attack', 'invasion',
                            'sanctions', 'escalation', 'tension', 'threat', 'crisis']

        detected = [kw for kw in conflict_keywords if kw in text]
        return detected

    def _assess_risk_level(self, text: str) -> str:
        """Simple risk level assessment."""
        high_risk_terms = ['imminent', 'urgent', 'critical', 'severe', 'escalating']
        medium_risk_terms = ['concern', 'monitoring', 'potential', 'emerging']

        high_count = sum(1 for term in high_risk_terms if term in text)
        medium_count = sum(1 for term in medium_risk_terms if term in text)

        if high_count > 2:
            return 'HIGH'
        elif medium_count > 2:
            return 'MEDIUM'
        else:
            return 'LOW'

    def _classify_document_type(self, text: str) -> str:
        """Classify document type."""
        if 'intelligence report' in text or 'classified' in text:
            return 'Intelligence Report'
        elif 'analysis' in text or 'assessment' in text:
            return 'Analysis'
        elif 'briefing' in text:
            return 'Briefing'
        else:
            return 'General Document'